Skip to main content

Advertisement

Log in

Performance assessment of modal parameters identification methods for timber structures evaluation: numerical modeling and case study

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The capacity to detect changes in modal properties caused by structural response from those resulting from noises (environment, test conditions, etc.) is a major issue in vibration analysis. For timber-based structures monitoring, high uncertainty ratios in the measurements may prevent efficient modal parameter identification. Therefore, assessment of large timber structures needs to rely on realistic measurement technologies and adequate post-processing tools for improving engineering practices. In this paper, four of the most common identification methods were presented in a benchmark study with respect to the modal parameters identification efficiency of timber elements under different numerical and experimental configurations. These are the Least-Squares Complex Exponential (LSCE) method, the Ibrahim Time Domain (ITD) method, the Frequency-Domain Direct Parameter Identification (FDPI) method and the Least-Squares Complex Frequency-Domain method (PolyMax). All these methods have advantages and disadvantages in terms of computational efficiency, statistical bias, or variance reduction. Therefore, a careful selection of the modal analysis method is a vital step in dynamic data evaluation. Experimental vibration tests combined with a finite element model were conducted. First, a numerical versus experimental efficiency benchmark was performed. Second, the robustness of the selected algorithms for investigating the influences of input waveforms complexity and external noise to the performance of the algorithms was investigated. The robustness of the selected algorithms for estimating the influences of input waveforms complexity on natural frequencies shifts was analyzed. When comparing various algorithms, the simulation and experimental results give a specific direction for the choice of the adapted modal analysis algorithm in timber-based structures engineering applications. The simulation and experimental results show that, for the same experimental data, the PolyMax algorithm has better performance, while the LSCE is worst. Besides, the PolyMax method gives a nonlinear dimensionality reduction algorithm for processing high dimensional information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by the French region Nouvelle-Aquitaine in the framework of the QualiPin research project. The authors thank also all the project partners for their critical discussion of the presented research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seif Eddine Hamdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdi, S.E., Sbartaï, Z.M. & Elachachi, S.M. Performance assessment of modal parameters identification methods for timber structures evaluation: numerical modeling and case study. Wood Sci Technol 55, 1593–1618 (2021). https://doi.org/10.1007/s00226-021-01335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-021-01335-0

Navigation