Skip to main content

Advertisement

Log in

Improving enzymatic saccharification of Eucalyptus grandis branches by ozone pretreatment

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Ozonolysis is potentially an effective method for pretreating lignocellulosic biomass to improve the production of fermentable sugars via enzymatic hydrolysis. The eliminated branches from eucalyptus trees can represent a production of around 30 million m3 of lignocellulosic material annually only in Brazil. Attempts of developing strategies for a rational use of this biomass are, thus, welcome. In this study, Eucalyptus grandis branches were pretreated with ozone in an attempt to increase enzymatic saccharification. Ozonolysis resulted in the degradation of lignin with negligible losses of cellulose and small losses of hemicellulose. Reduction in the lignin content from 26.63 to 9.53% already resulted in the maximal improvement of the saccharification yield (from 20 to 68%). The results indicate that ozone pretreatment can be a promising way of increasing the enzymatic digestibility of eucalyptus sawdust from eliminated branches of trees for its conversion into fermentable sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CrI:

Crystallinity index (%)

D ax :

Diffusion coefficient (m2 s−1)

D p :

Particle diameter (mm)

E 0 :

Reduction potential (V)

I amorphous :

Intensity of the amorphous peak at 2θ = 18° (counts)

I crystalline :

Intensity of the crystalline peak at 2θ = 22° (counts)

L bed :

Bed length (m)

Pe :

Peclet number (dimensionless)

Re :

Reynolds number (dimensionless)

RS:

Reducing sugars (mg g−1)

SY:

Saccharification yield (%)

TP:

Total content of holocellulose (mg g −1)

v s :

O3 velocity (m s−1)

μ O3 :

Dynamic viscosity of O3 (kg m−1 s−1)

ρ O3 :

Density of O3 (kg m3)

References

  • Agnihotri S, Johnsen IA, Bøe MS, Øyaas K, Moe S (2015) Ethanol organosolv pretreatment of softwood (Picea abies) and sugarcane bagasse for biofuel and biorefinery applications. Wood Sci Technol 49:881–896

    Article  CAS  Google Scholar 

  • Barrera-Martínez A, Guzmán N, Peña E, Vázquez T, Cerón-Camacho R, Folch J, Salazar JAH, Aburto J (2016) Ozonolysis of alkaline lignin and sugarcane bagasse: structural changes and their effect on saccharification. Biomass Bioenergy 94:167–172

    Article  CAS  Google Scholar 

  • Ben’ko EM, Manisova OR, Murav’eva GP, Lunin VV (2013) Structural changes in wood during ozonation. Russ J Phys Chem A 87:097–1101

    Google Scholar 

  • Buzala KP, Kalinowska H, Przybysz P, Małachowska E (2017) Conversion of various types of lignocellulosic biomass to fermentable sugars using kraft pulping and enzymatic hydrolysis. Wood Sci Technol 51:873–885

    Article  CAS  Google Scholar 

  • Carrier M, Loppinet-Serani A, Denux D, Lasnier J-M, Ham-Pichavant F, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35:298–307

    Article  CAS  Google Scholar 

  • Carvalho DM, Sevastyanova O, Penna LS, Silva BP, Lindström ME, Colodette JL (2015) Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Ind Crop Prod 73:118–126

    Article  CAS  Google Scholar 

  • Carvalho DM, Queiroz JH, Colodette JL (2016) Assessment of alkaline pretreatment for the production of bioethanol from eucalyptus, sugarcane bagasse and sugarcane straw. Ind Crop Prod 94:932–941

    Article  CAS  Google Scholar 

  • Casas MV, Alonso M, Oliet E, Rojo F, Rodríguez F (2012) FTIR analysis of lignin regenerated from Pinus radiata and Eucalyptus globulus woods dissolved in imidazolium-based ionic liquids. J Chem Technol Biotechnol 87:472–480

    Article  CAS  Google Scholar 

  • Castoldi R, Bracht A, Morais GR, Baesso ML, Correa RCG, Peralta RA, Moreira RFPM, Polizeli MLTM, Souza CGM, Peralta RM (2014) Biological pretreatment of Eucalyptus grandis sawdust with white-rot fungi: study of degradation patterns and saccharification kinetics. Chem Eng J 258:240–246

    Article  CAS  Google Scholar 

  • Castoldi R, Correa VG, Morais CR, Souza CGM, Bracht A, Peralta RA, Peralta-Muniz-Moreira RF, Peralta RM (2017) Liquid nitrogen pretreatment of eucalyptus sawdust and rice hull for enhanced enzymatic saccharification. Bioresour Technol 224:648–655

    Article  CAS  PubMed  Google Scholar 

  • Da Silva JCG, Alves JLF, Galdino WVA, Andersen SLF, de Sena RF (2018) Pyrolysis kinetic evaluation by single-step for waste wood from reforestation. Waste Manag 72:265–273

    Article  CAS  PubMed  Google Scholar 

  • Dong BY, Chen YF, Zhao CC, Zhang SJ, Guo XW, Xiao DG (2013) Simultaneous determination of furfural, acetic acid and 5-hydroxymethylfurfural in corncob hydrolysates using liquid chromatography with ultraviolet detection. J AOAC Int 96:1239–1244

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Cubero MT, Palacín LG, González-Benito G, Bolado S, Lucas S, Coca M (2012) An analysis of lignin removal in a fixed bed reactor by reaction of cereal straws with ozone. Bioresour Technol 107:229–234

    Article  CAS  PubMed  Google Scholar 

  • Hemraj-Benny T, Bandosz TJ, Wong SS (2008) Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single-walled carbon nanotubes. J Colloid Interface Sci 317:375–382

    Article  CAS  PubMed  Google Scholar 

  • Jang J-H, Lee S-H, Endo T, Kim N-H (2013) Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Sci Technol 47:925–937

    Article  CAS  Google Scholar 

  • Jönsson LJ, Martin C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  CAS  PubMed  Google Scholar 

  • Jönsson LJ, Abiksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima Y, Yoon S-L (2008) Improved enzymatic hydrolysis of waste paper by ozone pretreatment. J Mater Cycles Waste Manag 10:134–139

    Article  CAS  Google Scholar 

  • Lee JM, Jameel H, Venditti RA (2010) Effect of ozone and autohydrolysis pretreatments on enzymatic digestibility of coastal Bermuda grass. BioResources 5:1084–1101

    CAS  Google Scholar 

  • Lienqueo ME, Ravanal MC, Pezoa-Conte R, Cortínez V, Martínez L, Niklitschek T, Salazar O, Carmona R, García A, Hyvärinen S, Mäki-Arvela P, Mikkola J-P (2016) Second generation bioethanol from Eucalyptus globulus Labill and Nothofagus pumilio: ionic liquid pretreatment boosts the yields. Ind Crop Prod 80:148–155

    Article  CAS  Google Scholar 

  • Mamleeva NA, Autlov SA, Bazarnova NG, Lunin VV (2009) Delignification of softwood by ozonation. Pure Appl Chem 81:2081–2091

    Article  CAS  Google Scholar 

  • Mamleeva NA, Autlov SA, Barzanova NG, Lunin VV (2016) Degradation of polysaccharides and lignin in wood ozonation. Russ J Bioorg Chem 42:694–699

    Article  CAS  Google Scholar 

  • Martino DC, Colodette JL, Chandra R, Saddler J (2017) Steam explosion pretreatment used to remove hemicellulose to enhance the production of a eucalyptus organosolv dissolving pulp. Wood Sci Technol 51:557–569

    Article  CAS  Google Scholar 

  • Martins A, Cardoso AL, Stahl JA, Diniz J (2007) Low temperature conversion of rice husks, eucalyptus sawdust and peach stones for the production of carbon-like adsorbent. Bioresour Technol 98:1095–1100

    Article  CAS  PubMed  Google Scholar 

  • Martin-Sampedro R, Revilla E, Villar JC, Eugenio ME (2014) Enhancement of enzymatic saccharification of Eucalyptus globulus steam explosion versus steam treatment. Bioresour Technol 167:186–191

    Article  CAS  PubMed  Google Scholar 

  • Matsushita Y, Yamauchi K, Takabe K, Awano T, Yoshinaga MA, Kato M, Kobayashi T, Asada T, Furujyo A, Fukushim K (2010) Enzymatic saccharification of Eucalyptus bark using hydrothermal pretreatment with carbon dioxide. Bioresour Technol 101:4936–4939

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Miura T, Lee S-H, Inoue S, Endo T (2012) Combined pretreatment using ozonolysis and wet-disk milling to improve enzymatic saccharification of Japanese cedar. Bioresour Technol 126:182–186

    Article  CAS  PubMed  Google Scholar 

  • Pandey KK, Pitman AJ (2003) FT-IR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegrad 52:151–160

    Article  CAS  Google Scholar 

  • Peciulyte A, Karlstrom K, Larsson PT, Olsson L (2015) Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis. Biotechnol Biofuels 8:56–69

    Article  CAS  PubMed  Google Scholar 

  • Peretz R, Gerchman Y, Mamame H (2017) Ozonation of tannic acid to model biomass pretreatment for bioethanol production. Bioresour Technol 241:1060–1066

    Article  CAS  PubMed  Google Scholar 

  • Rastegara SO, Gu T (2017) Empirical correlations for axial dispersion coefficient and Peclet number in fixed-bed columns. J Chromatogr A 1490:33–137

    Google Scholar 

  • Rico A, Rencoret J, del Rio JC, Martinez AT, Gutiérrez A (2014) Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol Biofuels 7:6–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang Y-HP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-Based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30

    Article  CAS  PubMed  Google Scholar 

  • Romani A, Garrote G, Alonso JL, Parajó JC (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour Technol 101:8706–8712

    Article  CAS  PubMed  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1962) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  Google Scholar 

  • Shi F, Xiang H, Li Y (2015) Combined pretreatment using ozonolysis and ball milling to improve enzymatic saccharification of corn straw. Bioresour Technol 179:414–451

    Article  CAS  Google Scholar 

  • Silva MR, Machado GO, Deiner J, Calil C Jr (2010) Permeability measurements of Brazilian Eucalyptus. Mater Res 13:281–286

    Article  Google Scholar 

  • Singh S, Varanasi P, Singh P, Adams PD, Auer M, Simmons BA (2013) Understanding the impact of ionic liquid pretreatment on cellulose and lignin via thermochemical analysis. Biomass Bioenergy 54:276–283

    Article  CAS  Google Scholar 

  • Singh S, Cheng G, Sathitsuksanoh N, Wu D, Varansi P, George A, Balan V, Gao X, Kumar R, Dale BE, Wyman CE, Simmons BA (2015) Comparison of different biomass pretreatment techniques and their impact on chemistry and structure. Front Energy Res 2:1–12

    Article  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass (LAP). NREL, Golden, Co

  • Sudiyani Y, Imamura Y, Doi S, Yamauchi S (2003) Infrared spectroscopic investigations of weathering effects on the surface of tropical wood. J Wood Sci 49:86–92

    Article  Google Scholar 

  • Teramoto Y, Tanaka N, Lee S-H, Endo T (2008) Pretreatment of eucalyptus wood chips for enzymatic saccharification using combined sulfuric acid-free ethanol cooking and ball milling. Biotechnol Bioeng 99:75–85

    Article  CAS  PubMed  Google Scholar 

  • Travaini R, Otero MDM, Coca M, Da-Silva R, Bolado S (2013) Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresour Technol 133:332–339

    Article  CAS  PubMed  Google Scholar 

  • Travaini R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S (2016) Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol 199:2–12

    Article  CAS  PubMed  Google Scholar 

  • Vidal PF, Molinier J (1988) Ozonolysis of lignin—improvement of in vitro digestibility of poplar sawdust. Biomass 16:1–17

    Article  CAS  Google Scholar 

  • Wei W, Wu S, Liu L (2012) Enzymatic saccharification of dilute acid pretreated eucalyptus chips for fermentable sugar production. Bioresour Technol 110:302–307

    Article  CAS  PubMed  Google Scholar 

  • Ximenes E, Kim Y, Mosier NB, Dien B, Ladisch M (2011) Deactivation of cellulases by phenols. Enzyme Microb Technol 48:54–60

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809

    Article  CAS  Google Scholar 

  • Yáñez JSM, Rojas J, Castro J, Ragauskas A, Baeza J, Freer J (2013) Fuel ethanol production from Eucalyptus globulus wood by autocatalyzed organosolv pretreatment ethanol–water and SSF. J Chem Technol Biotechnol 88:39–48

    Article  CAS  Google Scholar 

  • Yu H, Zhang X, Song L, Ke J, Xu C, Du W, Zhang J (2010) Evaluation of white-rot fungi assisted alkaline/oxidative pretreatment of corn straw undergoing enzymatic hydrolysis by cellulase. J Biosci Bioeng 110:660–664

    Article  CAS  PubMed  Google Scholar 

  • Yunos NSHM, Baharuddin AS, Yunos KFM, Naim MN, Nishida H (2012) Physicochemical property changes of oil palm mesocarp fibers treated with high-pressure steam. BioResources 7:5983–5994

    Article  Google Scholar 

  • Zhang X, Yu H, Huang H, Liu Y (2007) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeterior Biodegrad 60:159–164

    Article  CAS  Google Scholar 

  • Zhang J, Feng L, Wang D, Zhang R, Liu G, Cheng G (2014) Thermogravimetric analysis of lignocellulosic biomass with ionic liquid pretreatment. Bioresour Technol 153:379–382

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Proc. 477825/2012-5 and Proc. 3079/2015-8) for funding this study. A. Bracht, R .F. Peralta-Muniz-Moreira, R. A. Peralta and R. M. Peralta are research grant recipients of CNPq.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Regina de Fátima Peralta Muniz Moreira or Rosane Marina Peralta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, S.L.F., Castoldi, R., Garcia, J.A.A. et al. Improving enzymatic saccharification of Eucalyptus grandis branches by ozone pretreatment. Wood Sci Technol 53, 49–69 (2019). https://doi.org/10.1007/s00226-018-1061-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-018-1061-7

Navigation