Skip to main content
Log in

Thermogravimetric analysis of cork and cork components from Quercus variabilis

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Cork and cork components (suberin, lignin, holocellulose, sclereids, and lenticels) were obtained by manual and chemical methods. Dynamic thermogravimetric analysis was used to investigate the thermal behavior of cork and its components. Thermal decomposition of cork was different from that of natural fibers. Characteristic temperatures of thermal decomposition for cork and impurities (sclereids and lenticels) were related to their chemical components. Cork lignin has the decomposition characteristics of G-type (guaiacyl units) lignin, typical of softwood with high residual solids. The pyrolysis characteristics of Quercus variabilis Blume (Q. variabilis) suberin was close to Quercus cerris L. (Q. cerris) suberin. The decomposition temperature range of cork, lignin, or suberin was wider than that of sclereids, lenticels, or holocellulose. Activation energy of cork was lower than that of natural fibers. The activation energy of cork and the extracted suberin was slightly increased when the conversion rate α was greater than 0.35. Activation energies of sclereids and lenticels were close to each other due to similar composition and proportion in them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antal MJ, Varhegyi G (1995) Cellulose pyrolysis kinetic—the current state knowledge. Ind Eng Chem Res 34:703–717

    Article  CAS  Google Scholar 

  • Aroso IV, Duarte ARC, Pires RR, Mano JF, Reis RL (2015) Cork processing with supercritical carbon dioxide: impregnation and sorption studies. J Supercrit Fluids 104:251–258

    Article  CAS  Google Scholar 

  • Arrhenius S (1889) On the reaction rate of the inversion of non-refined sugar upon souring. Z Phys Chem 4:226–248

    Google Scholar 

  • Chevreul M (1807) De l’action de l’acide nitrique sur le liège (The effect of nitric acid on cork). Ann Chim 92:323–333 (in French)

    Google Scholar 

  • Cordeiro N, Belgacem NM, Gandini A, Neto CP (1998) Cork suberin as a new source of chemicals: 2. Crystallinity, thermal and rheological properties. Bioresour Technol 63:153–158

    Article  CAS  Google Scholar 

  • Ferreira R, Garcia H, Sousa AF, Freire CSR, Silvestre AJD, Rebelo LPN, Pereira CS (2013) Isolation of suberin from birch outer bark and cork using ionic liquids: a new source of macromonomers. Ind Crop Prod 44:520–527

    Article  CAS  Google Scholar 

  • Ferreira J, Miranda I, Şen U, Pereira H (2016) Chemical and cellular features of virgin and reproduction cork from Quercus variabilis. Ind Crop Prod 94:638–648

    Article  CAS  Google Scholar 

  • Gangil S (2015) Superiority of intrinsic biopolymeric constituents in briquettes of lignocellulosic crop residues over wood: a TG-diagnosis. Renew Energy 76:478–483

    Article  CAS  Google Scholar 

  • Graça J, Pereira H (2000) Methanolysis of bark suberins: analysis of glycerol and acid monomers. Phytochem Anal 11:45–51

    Article  Google Scholar 

  • Grønli MG, Várhegyi G, Blasi CD (2002) Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res 41:4201–4208

    Article  Google Scholar 

  • Hu J, Shen D, Xiao R, Wu S, Zhang H (2012) Free-Radical analysis on thermochemical transformation of lignin to phenolic compounds. Energy Fuels 27:1–12

    CAS  Google Scholar 

  • Lagorce-Tachon A, Karbowiak T, Champion D, Gougeon RD, Bellat JP (2015) Mechanical properties of cork: effect of hydration. Mater Design 82:148–154

    Article  Google Scholar 

  • Lee MY, Lee TS, Park WH (2001) Effect of side chains on the thermal degradation of poly (3-hydroxyalkanoates). Macromol Chem Phys 202:1257–1261

    Article  CAS  Google Scholar 

  • Liu Z (1991) An introduction to thermal analysis, 1st edn. Chemical Industry Press, Beijing

    Google Scholar 

  • Liu T, Li B (2012) Kinetic studies on the pyrolysis of a water-soluble chitosan. J Huazhong Norm Univ 46:65–70

    Article  CAS  Google Scholar 

  • Liu Q, Wang S, Zheng Y, Luo Z, Cen K (2008) Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal Appl Pyrolysis 82:170–177

    Article  CAS  Google Scholar 

  • Pereira H (1992) The thermochemical degradation of cork. Wood Sci Technol 26:259–269

    Article  CAS  Google Scholar 

  • Pereira H (2007) Cork: biology, production and uses. Elsevier Science, Amsterdam

    Google Scholar 

  • Rosa ME, Fortes MA (1987) Temperature-induced alteration of the structure and mechanical properties of cork. Mater Sci Eng 100:69–78

    Article  Google Scholar 

  • Şen A, Miranda I, Santos S, Graça J, Pereira H (2010) The chemical composition of cork and phloem in the rhytidome of Quercus cerris bark. Ind Crops Prod 31:417–422

    Article  Google Scholar 

  • Şen A, Marques AV, Gominho J, Pereira H (2012) Study of thermochemical treatments of cork in the 150–400 °C range using colour analysis and FTIR spectroscopy. Ind Crops Prod 38:132–138

    Article  Google Scholar 

  • Şen A, Bulcke JV, Defoirdt N, Acker JV, Pereira H (2014) Thermal behaviour of cork and cork components. Thermochim Acta 582:94–100

    Article  Google Scholar 

  • Shen D, Zhang L, Xue J, Guan S, Qian L, Xiao R (2015) Thermal degradation of xylan-based hemicellulose under oxidative atmosphere. Carbohydr Polym 12:363–371

    Article  Google Scholar 

  • Silva SP, Sabino MA, Fernandes EM, Correlo VN, Boesel LF, Reis RL (2005) Cork: properties, capabilities and applications. Int Mater Rev 50:345–365

    Article  CAS  Google Scholar 

  • Sousa AF, Gandini A, Caetano A, Maria TM, Freire CS, Neto CP, Silvestre AJ (2016) Unravelling the distinct crystallinity and thermal properties of suberin compounds from Quercus suber and Betula pendula outer barks. Int J Biol Macromol 93:686–694

    Article  CAS  PubMed  Google Scholar 

  • TAPPI (1975) Holocellulose in wood. Standard Test Method 9 wd-75. Technical association of the pulp and paper industry, Atlanta, GA, USA

  • TAPPI (2011) Acid-insoluble lignin in wood and pulp. Standard Test Method 222 om-11. Technical association of the pulp and paper industry, Atlanta, GA, USA

  • Tian L, Shen B, Xu H, Li F, Wang Y, Singh S (2016) Thermal behavior of waste tea pyrolysis by TG-FTIR analysis. Energy 103:533–542

    Article  CAS  Google Scholar 

  • Trockenbrodt M (1995) Calcium oxalate crystals in the bark of Quercus robur, Ulmus glabra, Populus tremula and Betula pendula. Ann Bot 75:281–284

    Article  CAS  Google Scholar 

  • Tsujiyama S, Miyamori A (2000) Assignment of DSC thermograms of wood and its components. Thermochim Acta 351:177–181

    Article  CAS  Google Scholar 

  • Vyazovkin S (2000) Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem 19:45–60

    Article  CAS  Google Scholar 

  • Wang W (2008) Study on thermogravimetric analysis and pyrolysis kinetics of cellulose. Chongqing University, Chongqing

    Google Scholar 

  • Wang S, Lin H, Ru B, Sun W, Wang Y, Luo Z (2014) Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG–FTIR analysis. J Anal Appl Pyrolysis 108:78–85

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Dong HL, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98

    Article  CAS  Google Scholar 

  • Yu H, Liu F, Ke M, Zhang X (2015) Thermogravimetric analysis and kinetic study of bamboo waste treated by Echinodontium taxodii using a modified three-parallel-reactions model. Bioresour Technol 185:324–330

    Article  CAS  PubMed  Google Scholar 

  • Zhao J (2012) Research in expansion impurities removing technology and mechanisms of Quercus variabilis cork. North west A&F University, Yanling

    Google Scholar 

  • Zhao J, Feng D, Lei Y, Zhang W, Zhang Y (2013) Cell structure and chemical components of sclereids and lenticels from Quercus variabilis cork. J Northwest Sci Tech Univ Agric For 41:119–124

    Google Scholar 

  • Zhao J, Wang X, Hu J, Liu Q, Shen D, Xiao R (2014) Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polym Degrad Stab 108:133–138

    Article  CAS  Google Scholar 

  • Zhao J, Song X, Feng D, Lei Y, Zhang Y (2015) Expansion and impurity removal technology for Quercus variabilis cork. J Northwest Sci Tech Univ Agric For 43:87–92

    Google Scholar 

  • Zhao C, Jiang E, Chen A (2016) Volatile production from pyrolysis of cellulose, hemicellulose and lignin. J Energy Inst 13:1–12

    Google Scholar 

  • Zou H, Hu K, Gui L, Cheng L, Lu H (2011) Research on optimal characterization method of CaC2O4·H2O by thermogravimetry-differential thermal analyzer. J Guangxi Acad Sci 27:17–21

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31470583). The authors also acknowledge the Start-up Fund of Northwest A&F University (No. 2452015346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhou Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shangguan, W., Chen, Z., Zhao, J. et al. Thermogravimetric analysis of cork and cork components from Quercus variabilis . Wood Sci Technol 52, 181–192 (2018). https://doi.org/10.1007/s00226-017-0959-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-017-0959-9

Navigation