Skip to main content

Advertisement

Log in

Ethanol organosolv pretreatment of softwood (Picea abies) and sugarcane bagasse for biofuel and biorefinery applications

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Ethanol derived from biomass has the potential to be a renewable transportation fuel that can replace gasoline. This work was carried out to establish an optimized ethanol organosolv pretreatment of Norway spruce (Picea abies) for bioethanol production (63 wt% EtOH, pH ~3.5 in aqueous phase, 170–240 °C, 90 min) utilizing hydrolytic enzymes in the saccharification step. To test the generality of the method, a series of ethanol organosolv pretreatments were also performed on sugarcane bagasse (50 wt% EtOH, pH ~3.5 in aqueous phase, 155–210 °C, 90–120 min). The degree of delignification increased with increasing temperature during pretreatment, and the fastest increase was observed with sugarcane bagasse. The pretreatments were carried out in a batch mode. The maximum degree of delignification of ~65 % was reached at ~235 °C for Norway spruce, while sugarcane bagasse reached ~80 % at ~210 °C. Cellulose was subjected to degradation (5–10 % points) at these temperatures. Subsequent enzymatic hydrolysis (30 FPU/g cellulose, 32 pNPGU/g cellulose, 50 °C, 48 h) of ethanol organosolv-pretreated biomass achieved complete conversion for both raw materials at the highest degrees of delignification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adney B, Baker J (1996) Measurement of cellulase activities. Laboratory analytical procedre (LAP). NREL, Golden

    Google Scholar 

  • Agnihotri S, Dutt D, Tyagi CH (2010) Complete characterization of bagasse of early species of Saccharum officinarum-CO 89003 for pulp and paper making. BioResources 5(2):1197–1214

    CAS  Google Scholar 

  • Almengor MEM, González P, Baeza J, Freer J (2012) Effect of organosolv process on structural characteristics and enzymatic digestibility in Pinus Radiata Wood. Mater Sci Eng B 2(2):112–125

    CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Arato C, Pye EK, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 121–124:871–882

    Article  PubMed  Google Scholar 

  • Area CM, Felissia FE, Vallejos ME (2009) Ethanol-water fractionation of sugar cane bagasse catalyzed with acids. Cellul Chem Technol 43(7–8):271–279

    CAS  Google Scholar 

  • Berlin A, Gilkes N, Kilburn D, Bura R, Matkov A, Skomatovsky A et al (2005) Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates—Evidence for the role of accessory enzymes. Enzyme Microb Technol 37:175–184

    Article  CAS  Google Scholar 

  • Berlin A, Muñoz C, Gilkes N, Alamouti SM, Chung P, Kang K-Y, Maximenko V, Baeza J, Freer J, Mendonça R, Saddler J (2007) An evaluation of British Columbian beetle-killed hybrid spruce for bioethanol production. Appl Biochem Biotechnol 137–140(1–12):267–280

    PubMed  Google Scholar 

  • Bertaud F, Holmbom B (2004) Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Technol 38(4):245–256

    Article  CAS  Google Scholar 

  • Bouxin FP, David Jackson S, Jarvis MC (2014) Organosolv pretreatment of Sitka spruce wood: conversion of hemicelluloses to ethyl glycosides. Bioresour Technol 151:441–444

    Article  CAS  PubMed  Google Scholar 

  • Del Rio LF, Chandra RP, Saddler JN (2010) The effect of varying organosolv pretreatment chemicals on the physicochemicals properties and cellulolytic hydrolysis of mountain pine beetle killed lodgepole pine. Appl Biochem Biotechnol 161(1–8):1–21

    PubMed  Google Scholar 

  • Fengel D, Wegener G (1989) Wood Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin, Germany

    Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  CAS  PubMed  Google Scholar 

  • Gullichsen J, Fogelholm C-J (1999) Mechanical Pulping 5, chapters 3, 4, 6, 7, 8, and 11. In: Papermaking Science and technology, Fapet Oy, Tappi Press

  • Hayes DJ (2009) An examination of biorefining processes, catalysts and challenges. Catal Today 145:138–151

    Article  CAS  Google Scholar 

  • Koo BW, Min BC, Gwak KS, Lee SM, Choi JW, Yeo H, Choi IG (2012) Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass Bioenergy 42:24–32

    Article  CAS  Google Scholar 

  • Mabee WA, Gregg DJ, Arato C, Berlin A, Bura R, Gilkes N, Mirochnik O, Pan X, Pye EK, Saddler JN (2006) Updates on softwood-to-ethanol process development. Appl Biochem Biotechnol 129–132:55–70

    Article  PubMed  Google Scholar 

  • Mesa L, González E, Cara C, González M, Castro E, Mussatto SI (2011) The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J 168:1157–1162

    Article  CAS  Google Scholar 

  • Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye EK, Xiao ZZ, Zhang X, Saddler JN (2005a) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel grade ethanol and co-products. Biotechnol Bioeng 90:473–481

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN (2005b) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 121–124:1069–1079

    Article  PubMed  Google Scholar 

  • Pan X, Xie D, Yu RW, Lam D, Saddler JN (2007) Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: fractionation and process optimization. Ind Eng Chem Res 46:2609–2617

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residue I: sugarcane bagasse. Bioresour Technol 74:69–80

    Article  CAS  Google Scholar 

  • Paszner L, Behera NC (1989) Topochemistry of softwood delignification by alkali earth metal salt catalyzed organosolv pulping. Holzforschung 43:159–168

    Article  CAS  Google Scholar 

  • Prior BA, Day DF (2008) Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, β-glucosidase, and hemicellulase preparations. Appl Biochem Biotechnol 146:151–164

    Article  CAS  PubMed  Google Scholar 

  • Pu Y, Zhang D, Sing PM, Ragauskas AJ (2007) The new forestry biofuels sector. Biofuels Bioprod Bioref 2:58–73

    Article  Google Scholar 

  • Pye EK, Lora JH (1991) The Alcell process: a proven alternative to kraft pulping. Tappi J 74:113–118

    CAS  Google Scholar 

  • Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 6:86–871

    Google Scholar 

  • Rezende CA, de Lima MA, Maziero P, deAzevedo ER, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sannigrahi P, Miller SJ, Ragauskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res 345:965–970

    Article  CAS  PubMed  Google Scholar 

  • Selig M, Weiss N, Ji Y (2008) Enzymatic saccharification of lignocellulosic biomass. Laboratory analytical procedure. NREL, Golden

    Google Scholar 

  • Sindhu R, Binod P, Satyanagalakshmi K, Janu KU, Sajna KV, Kurien N, Sukumaran RK, Pandey A (2010) Formic acid as a potential agent for the conversion of sugarcane bagasse to bioethanol. App Biochem Biotechnol 162(8):2313–2323

    Article  CAS  Google Scholar 

  • Sjöström E (1993) Wood chemistry. Fundamentals and applications, 2nd edn. Academic Press Inc, Waltham

    Google Scholar 

  • Stockburger P (1993) An overview of near commercial and commercial solvent based pulping process. Tappi J 76(69):71–74

    CAS  Google Scholar 

  • Teramoto Y, Lee S-H, Endo T (2008) Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresour Technol 99:8856–8863

    Article  CAS  PubMed  Google Scholar 

  • Teramoto Y, Lee S-H, Endo T (2009) Cost reduction and feedstock diversity for sulphuric acid-free ethanol cooking of lignocellulosic biomass as a pretreatment to enzymatic saccharification. Bioresour Technol 1:4783–4789

    Article  Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–117

    Article  CAS  Google Scholar 

  • Wu MM, Chang K, Gregg DJ, Boussaid A, Beatson RP, Saddler JN (1999) Optimization of steam explosion to enhance hemicellulose recovery and enzymatic hydrolysis of cellulose in softwoods. Appl Biochem Biotechnol 77(1–3):47–54

    Article  Google Scholar 

  • Yáňez-S M, Rajos J, Castro J, Ragauskas A, Baeza J, Freer J (2013) Fuel ethanol production from Eucalyptus globulus wood by autocatalized organosolv pretreatment ethanol–water and SSF. J Chem Technol Biotechnol 88:39–48

    Article  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low cost cellulosic ethanol. Biofuels Bioprod Bioref-Biofpr 2:26–40

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  • Zhao X, Chang K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827

    Article  CAS  PubMed  Google Scholar 

  • Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been part of the LignoRef project (“Lignocellulosics as a basis for second generation biofuels and the future biorefinery”). We gratefully acknowledge The Research Council of Norway (Grant No. 190965/S60), Statoil ASA, Borregaard Industries Ltd., Allskog BA, Cambi AS, Xynergo AS, Hafslund ASA and Weyland AS for financial support. We also gratefully acknowledge Novozymes for providing the enzymes used in the saccharification trials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarnima Agnihotri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agnihotri, S., Johnsen, I.A., Bøe, M.S. et al. Ethanol organosolv pretreatment of softwood (Picea abies) and sugarcane bagasse for biofuel and biorefinery applications. Wood Sci Technol 49, 881–896 (2015). https://doi.org/10.1007/s00226-015-0738-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-015-0738-4

Keywords

Navigation