Skip to main content
Log in

Competitive formation of the methylene and methylene ether bridges in the urea–formaldehyde reaction in alkaline solution: a combined experimental and theoretical study

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The competitive formation of the methylene and methylene ether bridges in the urea–formaldehyde reaction in alkaline solution was investigated by using 13C NMR and quantum chemistry calculations. Despite that the classical theory states that the condensations of methylolureas only form methylene ether bridges at alkaline pH, the competing formation of methylene bridges was observed in this study. The NMR spectra show that the methylene ether bridges are exclusively formed under conditions of 80 and 90 °C with F/U = 2/1. At 80 °C with F/U = 1/1, the linear methylene bridge (–NH–CH2–NH–) began to compete with ether bridges, but it was minor. At 90 °C with F/U = 1/1, the methylene bridges were found to be much more competitive. The theoretically calculated energy barriers for the formation of different types of methylene ether bridges are lower than those for methylene bridges by 12–26 kJ/mol. The steric hindrance was proposed to be another important effect that suppresses the condensations between di- and tri-methylolureas to form the branched methylene bridges [–(HOCH2)N–CH2–NH– or –(HOCH2)N–CH2–N(CH2OH)–]. However, the reaction between a free amino group –NH2 and a methylol group –CH2OH was proposed to encounter no steric hindrance. Hence, once the higher temperature and lower F/U ratio were guaranteed, the competitive formation of linear methylene bridges was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beachem MT (1963) Urea–formaldehyde condensation products. J Org Chem 28:1876

    Article  CAS  Google Scholar 

  • Christjanson P, Pehk T, Siimer K (2006a) Hydroxymethylation and polycondensation reactions in urea–formaldehyde resin synthesis. J Appl Polym Sci 100:1673–1680

    Article  CAS  Google Scholar 

  • Christjanson P, Pehk T, Siimer K (2006b) Structure formation in urea–formaldehyde resin synthesis. Proc Est Acad Sci Chem 55:212–225

    CAS  Google Scholar 

  • Chuang I, Maciel GE (1994) NMR study of the stabilities of urea–formaldehyde resin components toward hydrolytic treatments. J Appl Polym Sci 52:1637–1651

    Article  CAS  Google Scholar 

  • Cossi M, Barone V, Mennucci B (1998) Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem Phys Lett 286:253–260

    Article  CAS  Google Scholar 

  • De Jong JI, De Jonge J (1952a) The reaction of urea with formaldehyde. J Recl Trav Chim 71:643–660

    Article  Google Scholar 

  • De Jong JI, De Jonge J (1952b) The formation and decomposition of dimethylolurea. J Recl Trav Chim 71:661–667

    Article  Google Scholar 

  • De Jong JI, De Jonge J (1952c) The reaction between urea and formaldehyde in concentrated solutions. J Recl Trav Chim 71:890–898

    Article  Google Scholar 

  • De Jong JI, De Jonge J (1952d) Kinetics of the reaction between mono-methylolurea and methylene diurea. J Recl Trav Chim 72:207–212

    Article  Google Scholar 

  • De Jong JI, De Jonge J (1953) Kinetics of the formation of methylene linkages in solutions of urea and formaldehyde. J Recl Trav Chim 72:139–156

    Article  Google Scholar 

  • Despres A, Pizzi A, Pasch H, Kandelbauer A (2007) Comparative 13C-NMR and matrix-assisted laser desorption/ionization time-of-flight analyses of species variation and structure maintenance during melamine–urea–formaldehyde resin preparation. J Appl Polym Sci 106:1106–1128

    Article  CAS  Google Scholar 

  • Du G, Lei H, Pizzi A, Pasch H (2008) Synthesis–structure–performance relationship of cocondensed phenol–urea–formaldehyde resins by MALDI-ToF and 13C NMR. J Appl Polym Sci 110:1182–1194

    Article  CAS  Google Scholar 

  • Dunky M (1998) Urea–formaldehyde (UF) adhesive resin for wood. Int J Adhes Adhes 18:95–107

    Article  CAS  Google Scholar 

  • Dunky M (2004) Adhesives based on formaldehyde condensation resins. Macromol Symp 217:417–429

    Article  CAS  Google Scholar 

  • Frisch MJ (2003) Revision A. 01. Gaussian, Inc., Wallingford

  • Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Lett 153:503–506

    Article  CAS  Google Scholar 

  • Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  • Jada S (1998) The structure of urea–formaldehyde resins. J Appl Polym Sci 35:1573–1592

    Article  Google Scholar 

  • Kadowaki H (1936) New compounds of urea–formaldehyde condensation products. Bull Chem Soc Jpn 11:248

    Article  CAS  Google Scholar 

  • Kibrik EJ, Steinhof O, Scherr G, Thiel WR, Hasse H (2012) 13C-NMR, 13C–13C gCOSY, and ESI-MS characterization of ether-bridged condensation products in N,N0-dimethylurea–formaldehyde systems. J Appl Polym Sci 128:3957

    Article  Google Scholar 

  • Kibrik EJ, Steinhof O, Scherr G, Thiel WR, Hasse H (2013) Proof of ether-bridged condensation products in UF resins by 2D NMR spectroscopy. J Polym Res 20:79

    Article  Google Scholar 

  • Kibrik EJ, Steinhof O, Scherr G, Thiel WR, Hasse H (2014) On-line NMR spectroscopic reaction kinetic study of urea–formaldehyde resin synthesis. Ind Eng Chem Res 53:12602–12613

    Article  CAS  Google Scholar 

  • Kim MG (1999) Examination of selected synthesis parameters for typical wood adhesive-type urea–formaldehyde resins by 13C NMR Spectroscopy. I. J Polym Sci Part A Polym Chem 37:1007

    Google Scholar 

  • Kim MG (2000) Examination of selected synthesis parameters for typical wood adhesive-type urea–formaldehyde resins by 13C NMR spectroscopy. II. J Appl Polym Sci 75:1243–1254

    Article  CAS  Google Scholar 

  • Kim MG (2001) Examination of selected synthesis parameters for typical wood adhesive-type urea–formaldehyde resins by 13C NMR spectroscopy. III. J Appl Polym Sci 80:2800–2814

    Article  CAS  Google Scholar 

  • Miertus S, Tomasi J (1982) Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. J Chem Phys 65:239–245

    CAS  Google Scholar 

  • Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. J Chem Phys 55:117–129

    CAS  Google Scholar 

  • Minopoulou E, Dessipri E, Chryssikos GD, Gionis V, Paipetis A, Panayiotou C (2003) Use of NIR for structural characterization of urea–formaldehyde resins. Int J Adhes Adhes 23:473–484

    Article  CAS  Google Scholar 

  • Nair BR, Francis DJ (1983) Kinetics and mechanism of urea–formaldehyde reaction. Polymer 24:626–630

    Article  CAS  Google Scholar 

  • No BY, Kim MG (2004) Syntheses and properties of low-level melamine-modified urea–melamine–formaldehyde resins. J Appl Polym Sci 93:2559–2569

    Article  CAS  Google Scholar 

  • Park B, Kim YS, Singh AP, Lim KP (2003) Reactivity, chemical structure, and molecular mobility of urea–formaldehyde adhesives synthesized under different conditions using FTIR and solid-state 13C CP/MAS NMR spectroscopy. J Appl Polym Sci 88:2677–2687

    Article  CAS  Google Scholar 

  • Philbrook A, Blakea CJ, Dunlopb N, Easton CJ, Keniry MA, Simpson JS (2005) Demonstration of co-polymerization in melamine–urea–formaldehyde reactions using 15N NMR correlation spectroscopy. Polymer 46:2153–2156

    Article  CAS  Google Scholar 

  • Siimer K, Pehk T, Christjanson P (1999) Study of the structural changes in urea–formaldehyde condensates during synthesis. Macromol Symp 148:149–156

    Article  CAS  Google Scholar 

  • Soulard C, Kamoun C, Pizzi A (1999) Uron and uron–urea–formaldehyde resins. J Appl Polym Sci 72:277–289

    Article  CAS  Google Scholar 

  • Steinhof O, Kibrik EJ, Scherr G, Hasse H (2014) Quantitative and qualitative 1H, 13C, and 15N NMR spectroscopic investigation of the urea–formaldehyde resin synthesis. Magn Reson Chem 52:138

    Article  CAS  PubMed  Google Scholar 

  • Tomita B, Hatono S (1978) Urea–formaldehyde resins. III. Constitutional characterization by 13C Fourier transform NMR spectroscopy. J Polym Sci 16:2509–2525

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the programs of National Natural Science Foundation of China (NSFC) (Nos. 31360159 and 51273163). We are thankful to Dr. Bo Li of Kunming Institute of Botany, Chinese Academy of Science for 13C NMR determinations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanben Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Guo, X., Liang, J. et al. Competitive formation of the methylene and methylene ether bridges in the urea–formaldehyde reaction in alkaline solution: a combined experimental and theoretical study. Wood Sci Technol 49, 475–493 (2015). https://doi.org/10.1007/s00226-015-0711-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-015-0711-2

Keywords

Navigation