Skip to main content
Log in

Distribution of structure and lignin within growth rings of Norway spruce

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

A radial core from a Norway spruce (Picea abies (L.) Karst.) estimated to be about 107 years old was cut from a board and was analyzed for density and microfibril angle (MFA). Furthermore, cell geometry, wall thickness and lignin distribution were analyzed on three selected growth rings in detail. Intra-ring differences in the density profiles are also true for cell wall thicknesses as well as radial and tangential lumen diameters. A higher MFA was found for earlywood with a slow decrease toward the latewood region. The lignin was found to remain rather constant throughout the growth rings, which suggests a constant chemical composition of the cell wall material within the growth ring. From the recorded datasets on a cellular level, it can be concluded that the main adaptation regarding structure–property relationships toward the optimization of water transport and mechanical stability is mainly achieved at the cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badel E, Perré P (2007) The shrinkage of oak predicted from its anatomical pattern: validation of a cognitive model. Trees Struct Funct 21(1):111–120

    Google Scholar 

  • Bergander A, Brändström J, Daniel G, Sahnen L (2002) Fibril angle variability in earlywood of Norway spruce using soft rot cavities and polarization confocal microscopy. J Wood Sci 48(4):255–263

    Article  CAS  Google Scholar 

  • Bodig J, Jayne BA (1993) Mechanics of wood and wood composites. Krieger Publishing Company, Malabar

    Google Scholar 

  • Brändström J (2001) Micro- and ultrastructural aspects of Norway spruce tracheids: a review. IAWA J 22(44):333–353

    Article  Google Scholar 

  • Burgert I (2006) Exploring the micromechanical design of plant cell walls. Am J Bot 93(10):1391–1401

    Article  PubMed  Google Scholar 

  • Derome D, Griffa M, Koebel M, Carmeliet J (2011a) Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. J Struct Biol 173(1):180–190

    Article  PubMed  Google Scholar 

  • Derome D, Zillig W, Carmeliet J (2011b) Variation of measured cross-sectional cell dimensions and calculated water vapor permeability across a single growth ring of spruce wood. Wood Sci Technol 46(5):827–840

    Article  Google Scholar 

  • Donaldson L (2008) Microfibril angle: measurement, variation and relationships—a review. IAWA J 29(4):345–386

    Article  Google Scholar 

  • Eder M, Jungnikl K, Burgert I (2009) A close-up view of wood structure and properties across a growth ring of Norway spruce Picea abies [L] Karst. Trees-Struct Funct 23(1):79–84

    Article  Google Scholar 

  • Evans R (1994) Rapid measurement of the transverse dimensions of tracheids in radial wood sections from Pinus radiata. Holzforschung 48(2):168–172

    Article  Google Scholar 

  • Evans R, Hughes M, Menz D (1999) Microfibril angle variation by scanning X-ray diffractometry. Appita J 52(5):363–367

    Google Scholar 

  • Fengel D, Stoll M (1973) Über die Veränderungen des Zellquerschnitts, der Dicke der Zellwand und der Wandschichten von Fichtenholz-Tracheiden innerhalb eines Jahrringes. Holzforschung. Int J Biol Chem Phys Technol Wood 27. doi:10.1515/hfsg.1973.27.1.1

  • Fengel D, Wegener G (1984) Wood chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Fergus BJ, Procter AR, Scott JAN, Goring DAI (1969) The distribution of lignin in sprucewood as determined by ultraviolet microscopy. Wood Sci Technol 3(2):117–138

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Fukazawa K, Imagawa H (1981) Quantitative analysis of lignin using an UV microscopic image analyser. variation within one growth increment. Wood Sci Technol 15(1):45–55

    Article  CAS  Google Scholar 

  • Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140(4):1246–1254

    Article  PubMed  CAS  Google Scholar 

  • Gindl W (2001a) Cell-wall lignin content related to tracheid dimensions in drought-sensitive Austrian pine (Pinus Nigra). IAWA J 22(2):113–120

    Article  Google Scholar 

  • Gindl W (2001b) The effect of varying latewood proportion on the radial distribution of lignin content in a pine stem. Holzforschung 55:455–458

    CAS  Google Scholar 

  • Gindl W, Grabner M (2000) Characteristics of spruce [Picea abies (L.) Karst] latewood formed under abnormally low temperatures. Holzforschung 54:9–11

    Article  CAS  Google Scholar 

  • Gindl W, Grabner M, Wimmer R (2000) The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees Struct Funct 14(7):409–414

    Article  Google Scholar 

  • Gindl W, Grabner M, Wimmer R (2001) Effects of altitude on tracheid differentiation and lignification of Norway Spruce. Can J Bot 79:815–821

    Google Scholar 

  • Gindl W, Gupta HS, Schoberl T, Lichtenegger HC, Fratzl P (2004) Mechanical properties of spruce wood cell walls by nanoindentation. Appl Phys Mater Sci Process 79(8):2069–2073

    Article  CAS  Google Scholar 

  • Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech A Solids 24(6):1030–1053

    Article  Google Scholar 

  • Jenkins PA (1975) Influence of temperature change on wood formation in Pinus radiata grown in controlled environments. NZ J Bot 13(4):579–591

    Article  Google Scholar 

  • Kienast F, Schweingruber FH, Bräker OU, Schär E (1987) Tree-ring studies on conifers along ecological gradients and the potential of single-year analyses. Can J For Res 17(7):683–696

    Article  Google Scholar 

  • Kollmann FF, Côté WA (1968) Principles of wood science and technology: Part I solid wood. Springer, Berlin

    Book  Google Scholar 

  • Kučera B (1994) A hypothesis relating current annual height increment to Juvenile wood formation in Norway spruce. Wood Fiber Sci 26(1):152–167

    Google Scholar 

  • Laming PB, ter Welle BJH (1971) Anomalous tangential pitting in Picea abies (L.) Karst. (European Spruce). IAWA Bull, pp 3–10

  • Lassen L, Okkonen E (1969) Effect of rainfall and elevation on specific gravity of coast Douglas-fir. Wood Fiber Sci 1(3):227–235

    Google Scholar 

  • Lichtenegger H, Reiterer A, Stanzl-Tschegg S, Fratzl P (1999) Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization. J Struct Biol 128:257–269

    Article  PubMed  CAS  Google Scholar 

  • Niemz P (1993) Physik des Holzes und der Holzwerkstoffe. DRW, Leinfelden-Echterdingen

    Google Scholar 

  • Oleksyn J, Fritts HC (1991) Influence of climatic factors upon tree rings of Larix decidua and L. decidua × L. kaempferi from Pulawy, Poland. Trees Struct Funct 5(2):75–82

    Google Scholar 

  • Paakkari T, Serimaa R (1984) A study of the structure of wood cells by X-ray diffraction. Wood Sci Technol 18(2):79–85

    Article  Google Scholar 

  • Perré P, Badel É (2003) Predicting of oak wood properties using X-ray inspection: representation, homogenisation and localisation. Part II: computation of macroscopic properties and microscopic stress fields. Ann For Sci 60(3):247–257

    Article  Google Scholar 

  • Qing H, Mishnaevsky L (2009) 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers. Mech Mater 41(9):1034–1049

    Article  Google Scholar 

  • Salmén L (2004) Micromechanical understanding of the cell-wall structure. CR Biol 327(9–10):873–880

    Article  Google Scholar 

  • Scott JAN, Procter AR, Fergus BJ, Goring DAI (1969) The application of ultraviolet microscopy to the distribution of lignin in wood. Description and validity of the technique. Wood Sci Technol 3(1):73–92

    Article  Google Scholar 

  • Splechtna BE, Dobrys J, Klinka K (2000) Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in relation to elevation and climatic fluctuations. Ann For Sci 57(2):89–100

    Article  Google Scholar 

  • Wagenführ R (2000) Holzatlas. Fachbuchverlag, Leipzig

    Google Scholar 

  • Wilson JW, Wellwood RW (1965) Intra-increment chemical properties of certain western Canadian coniferous species. In: Coté WA (ed) Cellular ultrastructure of woody plants. Syracuse University Press, Syracuse, pp 551–559

    Google Scholar 

  • Wimmer R, Lucas BN (1997) Comparing mechanical properties of secondary wall and cell corner middle lamella in Spruce wood. IAWA J 18(1):77–88

    Google Scholar 

  • Wimmer R, Lucas BN, Oliver WC, Tsui TY (1997) Longitudinal hardness and Young’s modulus of spruce tracheid secondary walls using nanoindentation technique. Wood Sci Technol 31(2):131–141

    CAS  Google Scholar 

  • Zobel BJ, Van Buijtenen JP (1989) Wood variation—its causes and control. Springer series in wood science. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

The first author is grateful for the support provided by the Swiss National Science Foundation (Grant No. 125184). Parts of the current work were supported by COST Action FP0802, which funded a short-time scientific mission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lanvermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanvermann, C., Evans, R., Schmitt, U. et al. Distribution of structure and lignin within growth rings of Norway spruce. Wood Sci Technol 47, 627–641 (2013). https://doi.org/10.1007/s00226-013-0529-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-013-0529-8

Keywords

Navigation