Skip to main content
Log in

Dimension Is Compression

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Effective fractal dimension was defined by Lutz (2003) in order to quantitatively analyze the structure of complexity classes. Interesting connections of effective dimension with information theory were also found, in fact the cases of polynomial-space and constructive dimension can be precisely characterized in terms of Kolmogorov complexity, while analogous results for polynomial-time dimension haven’t been found.

In this paper we remedy the situation by using the natural concept of reversible time-bounded compression for finite strings. We completely characterize polynomial-time dimension in terms of polynomial-time compressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albert, P., Mayordomo, E., Moser, P.: Bounded pushdown dimension vs Lempel Ziv information density. Technical Report TR07-051, ECCC: Electronic Coloquium on Computational Complexity (2007)

  2. Ambos-Spies, K., Merkle, W., Reimann, J., Stephan, F.: Hausdorff dimension in exponential time. In: Proceedings of the 16th IEEE Conference on Computational Complexity, pp. 210–217 (2001)

    Google Scholar 

  3. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong dimension in algorithmic information and computational complexity. SIAM J. Comput. 37, 671–705 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beigel, R., Fortnow, L., Stephan, F.: Infinitely-often autoreducible sets. In: Proceedings of the 14th Annual International Symposium on Algorithms and Computation. Lecture Notes in Computer Science, vol. 2906, pp. 98–107. Springer, Berlin (2003)

    Google Scholar 

  5. Buhrman, H., Longpré, L.: Compressibility and resource bounded measure. SIAM J. Comput. 31(3), 876–886 (2002)

    Article  MATH  Google Scholar 

  6. Cai, J., Hartmanis, J.: On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line. J. Comput. Syst. Sci. 49, 605–619 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  8. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theor. Comput. Sci. 310, 1–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  10. Hitchcock, J.M.: MAX3SAT is exponentially hard to approximate if NP has positive dimension. Theor. Comput. Sci. 289(1), 861–869 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hitchcock, J.M.: Effective fractal dimension: foundations and applications. PhD thesis, Iowa State University (2003)

  12. Hitchcock, J.M.: Fractal dimension and logarithmic loss unpredictability. Theor. Comput. Sci. 304(1–3), 431–441 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: The fractal geometry of complexity classes. SIGACT News 36, 24–38 (2005)

    Google Scholar 

  14. Hitchcock, J.M., Vinodchandran, N.V.: Dimension, entropy rates, and compression. In: Proceedings of the 19th IEEE Conference on Computational Complexity, pp. 174–183 (2004)

    Google Scholar 

  15. Huffman, D.A.: Canonical forms for information-lossless finite-state logical machines. IRE Trans. Circuit Theory CT-6, 41–59 (1959). Also available in E.F. Moore (ed.), Sequential Machine: Selected Papers, pp. 866–871. Addison-Wesley (1964)

    Google Scholar 

  16. Lempel, A., Ziv, J.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23, 337–343 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lempel, A., Ziv, J.: Compression of individual sequences via variable rate coding. IEEE Trans. Inf. Theory 24, 530–536 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lutz, J.H.: The quantitative structure of exponential time. In: Hemaspaandra, L.A., Selman, A.L. (eds.) Complexity Theory Retrospective II, pp. 225–254. Springer, Berlin (1997)

    Chapter  Google Scholar 

  19. Lutz, J.H.: Dimension in complexity classes. SIAM J. Comput. 32, 1236–1259 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lutz, J.H.: The dimensions of individual strings and sequences. Inf. Comput. 187, 49–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lutz, J.H.: Effective fractal dimensions. Math. Log. Q. 51, 62–72 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mayordomo, E.: Contributions to the study of resource-bounded measure. PhD thesis, Universitat Politècnica de Catalunya (1994)

  23. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension. Inf. Process. Lett. 84(1), 1–3 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mayordomo, E.: Effective fractal dimension in algorithmic information theory. In: New Computational Paradigms: Changing Conceptions of What Is Computable, pp. 259–285. Springer, Berlin (2008)

    Google Scholar 

  25. Ryabko, B.Ya.: Coding of combinatorial sources and Hausdorff dimension. Sov. Math. Dokl. 30, 219–222 (1984)

    MATH  Google Scholar 

  26. Ryabko, B.Ya.: Noiseless coding of combinatorial sources. Probl. Inf. Transm. 22, 170–179 (1986)

    MathSciNet  MATH  Google Scholar 

  27. Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Inf. Comput. 103, 159–194 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Staiger, L.: A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. Theory Comput. Syst. 31, 215–229 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Mayordomo.

Additional information

This work was supported by the Spanish Ministry of Science and Innovation (Projects TIN2008-06582-C03-02, TIN2011-27479-C04-01).

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Valdés, M., Mayordomo, E. Dimension Is Compression. Theory Comput Syst 52, 95–112 (2013). https://doi.org/10.1007/s00224-012-9417-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-012-9417-0

Keywords

Navigation