Skip to main content
Log in

Estimation of Whole-Body and Appendicular Lean Mass from Spine and Hip Dual Energy X-ray Absorptiometry: A Cross-Sectional Study

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Whole-body dual X-ray absorptiometry (DXA) accurately measures lean mass but is not routinely used in clinical practice. Hip and spine DXA are used in the diagnosis of osteoporosis, and with the common co-occurrence of sarcopenia with osteoporosis, regional DXA scans provide an opportunity for assessment of lean mass. The aim of this study is to develop predictive equations for the estimation of whole-body lean mass (WBLM), appendicular lean mass (ALM) and whole-body fat mass (WBFM) from regional DXA scans. A total of 2427 participants (ages 20–96 year; 57.7% men) from the Geelong Osteoporosis Study who underwent both regional and whole-body DXA were included in the analysis. Using forward stepwise multivariable linear regression, percentage fat (spine%fat, hip%fat) values from lumbar spine and femoral neck DXA were used in combination with clinical data to develop and validate equations for the estimation of WBLM, WBFM and ALM. Mean age was 53.5 year (± 19.2), weight 78.2 kg (± 15.4), height 169.6 cm (± 9.4), WBLM 50.4 kg (± 11.1), ALM 22.8 kg (± 5.4) and WBFM 24.3 kg (± 10.4). Spine%fat (r = 0.21) and hip%fat (r = − 0.34) were correlated with whole-body lean mass (p < 0.001). Final predictive equations included age, sex, weight, height, spine%fat, and hip%fat and possessed high predictive value (Adj R2 0.91–0.94, RMSE 1.60–2.84 kg). K-fold cross-validation methods produced median root mean square error (RMSE) ranging from 1.59 to 2.81 kg for the three models. Regional DXA scans of the spine and hip can be used to estimate whole-body and appendicular lean mass, to assist in the identification of low muscle mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31. https://doi.org/10.1093/ageing/afy169

    Article  PubMed  Google Scholar 

  2. Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50(5):889–896. https://doi.org/10.1046/j.1532-5415.2002.50216.x

    Article  PubMed  Google Scholar 

  3. Hairi NN, Cumming RG, Naganathan V, Handelsman DJ, Le Couteur DG, Creasey H, Waite LM, Seibel MJ, Sambrook PN (2010) Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: the concord health and ageing in men project. J Am Geriatr Soc 58(11):2055–2062. https://doi.org/10.1111/j.1532-5415.2010.03145.x

    Article  PubMed  Google Scholar 

  4. Hirani V, Blyth F, Naganathan V, Le Couteur DG, Seibel MJ, Waite LM, Handelsman DJ, Cumming RG (2015) Sarcopenia is associated with incident disability, institutionalization, and mortality in community-dwelling older men: the concord health and ageing in men project. J Am Med Dir Assoc 16(7):607–613. https://doi.org/10.1016/j.jamda.2015.02.006

    Article  PubMed  Google Scholar 

  5. Janssen I (2006) Influence of sarcopenia on the development of physical disability: the cardiovascular health study. J Am Geriatr Soc 54(1):56–62. https://doi.org/10.1111/j.1532-5415.2005.00540.x

    Article  PubMed  Google Scholar 

  6. Brown JC, Harhay MO, Harhay MN (2016) Sarcopenia and mortality among a population-based sample of community-dwelling older adults. J Cachexia Sarcopenia Muscle 7(3):290–298. https://doi.org/10.1002/jcsm.12073

    Article  PubMed  Google Scholar 

  7. Iannuzzi-Sucich M, Prestwood KM, Kenny AM (2002) Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J Gerontol A Biol Sci Med Sci 57(12):M772–M777. https://doi.org/10.1093/gerona/57.12.M772

    Article  PubMed  Google Scholar 

  8. Yamada M, Nishiguchi S, Fukutani N, Tanigawa T, Yukutake T, Kayama H, Aoyama T, Arai H (2013) Prevalence of sarcopenia in community-dwelling Japanese older adults. J Am Med Dir Assoc 14(12):911–915. https://doi.org/10.1016/j.jamda.2013.08.015

    Article  PubMed  Google Scholar 

  9. Volpato S, Bianchi L, Cherubini A, Landi F, Maggio M, Savino E, Bandinelli S, Ceda GP, Guralnik JM, Zuliani G, Ferrucci L (2014) Prevalence and clinical correlates of sarcopenia in community-dwelling older people: application of the EWGSOP definition and diagnostic algorithm. J Gerontol A Biol Sci Med Sci 69(4):438–446. https://doi.org/10.1093/gerona/glt149

    Article  CAS  PubMed  Google Scholar 

  10. Sui SX, Holloway-Kew KL, Hyde NK, Williams LJ, Tembo MC, Leach S, Pasco JA (2020) Definition-specific prevalence estimates for sarcopenia in an Australian population: the Geelong Osteoporosis Study. JCSM Clin Rep 5:89–98

    Google Scholar 

  11. Espíndola de Araújo B, Teixeira PP, Valduga K, da Silva FJ, Silva FM (2021) Prevalence, associated factors, and prognostic value of sarcopenia in patients with acute exacerbated chronic obstructive pulmonary disease: a cohort study. Clin Nutr ESPEN. https://doi.org/10.1016/j.clnesp.2021.01.042

    Article  PubMed  Google Scholar 

  12. Christensen HM, Kistorp C, Schou M, Keller N, Zerahn B, Frystyk J, Schwarz P, Faber J (2013) Prevalence of cachexia in chronic heart failure and characteristics of body composition and metabolic status. Endocrine 43(3):626–634. https://doi.org/10.1007/s12020-012-9836-3

    Article  CAS  PubMed  Google Scholar 

  13. Wang XH, Mitch WE (2014) Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol 10(9):504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G (2008) Cachexia: a new definition. Clin Nutr 27(6):793–799

    Article  CAS  PubMed  Google Scholar 

  15. Vlietstra L, Hendrickx W, Waters DL (2018) Exercise interventions in healthy older adults with sarcopenia: a systematic review and meta-analysis. Australas J Ageing 37(3):169–183. https://doi.org/10.1111/ajag.12521

    Article  PubMed  Google Scholar 

  16. Lozano-Montoya I, Correa-Pérez A, Abraha I, Soiza RL, Cherubini A, O’Mahony D, Cruz-Jentoft AJ (2017) Nonpharmacological interventions to treat physical frailty and sarcopenia in older patients: a systematic overview - the SENATOR Project ONTOP Series. Clin Interv Aging 12:721–740. https://doi.org/10.2147/CIA.S132496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pahor M, Guralnik JM, Ambrosius WT, Blair S, Bonds DE, Church TS, Espeland MA, Fielding RA, Gill TM, Groessl EJ, King AC, Kritchevsky SB, Manini TM, McDermott MM, Miller ME, Newman AB, Rejeski WJ, Sink KM, Williamson JD, investigators ftLs (2014) Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA 311(23):2387–2396. https://doi.org/10.1001/jama.2014.5616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jones SE, Maddocks M, Kon SS, Canavan JL, Nolan CM, Clark AL, Polkey MI, Man WD (2015) Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax 70(3):213–218. https://doi.org/10.1136/thoraxjnl-2014-206440

    Article  PubMed  Google Scholar 

  19. Heiwe S, Jacobson SH (2014) Exercise training in adults with CKD: a systematic review and meta-analysis. Am J Kidney Dis 64(3):383–393. https://doi.org/10.1053/j.ajkd.2014.03.020

    Article  PubMed  Google Scholar 

  20. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M (2018) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. https://doi.org/10.1093/ageing/afy169

    Article  PubMed Central  Google Scholar 

  21. Dent E, Morley JE, Cruz-Jentoft AJ, Arai H, Kritchevsky SB, Guralnik J, Bauer JM, Pahor M, Clark BC, Cesari M, Ruiz J, Sieber CC, Aubertin-Leheudre M, Waters DL, Visvanathan R, Landi F, Villareal DT, Fielding R, Won CW, Theou O, Martin FC, Dong B, Woo J, Flicker L, Ferrucci L, Merchant RA, Cao L, Cederholm T, Ribeiro SML, Rodríguez-Mañas L, Anker SD, Lundy J, Gutiérrez Robledo LM, Bautmans I, Aprahamian I, Schols JMGA, Izquierdo M, Vellas B (2018) International Clinical Practice Guidelines for Sarcopenia (ICFSR): screening, diagnosis and management. J Nutr Health Aging 22(10):1148–1161. https://doi.org/10.1007/s12603-018-1139-9

    Article  CAS  PubMed  Google Scholar 

  22. Bhasin S, Travison TG, Manini TM, Patel S, Pencina KM, Fielding RA, Magaziner JM, Newman AB, Kiel DP, Cooper C, Guralnik JM, Cauley JA, Arai H, Clark BC, Landi F, Schaap LA, Pereira SL, Rooks D, Woo J, Woodhouse LJ, Binder E, Brown T, Shardell M (2020) Sarcopenia definition: the position statements of the sarcopenia definition and outcomes consortium. J Am Geriatr Soc 68(7):1410–1418. https://doi.org/10.1111/jgs.16372

    Article  PubMed  Google Scholar 

  23. Chen L-K, Woo J, Assantachai P, Auyeung T-W, Chou M-Y, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee W-J, Lee Y, Liang C-K, Lim J-Y, Lim WS, Peng L-N, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang T, Akishita M (2020) Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc 21(3):300–307. https://doi.org/10.1016/j.jamda.2019.12.012

    Article  PubMed  Google Scholar 

  24. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D (1998) Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol (1985) 85(1):115–122. https://doi.org/10.1152/jappl.1998.85.1.115

    Article  CAS  Google Scholar 

  25. Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D (2002) Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr 76(2):378–383

    Article  CAS  PubMed  Google Scholar 

  26. Visser M, Fuerst T, Lang T, Salamone L, Harris TB, Health FT (1985) Aging bCSD-EX-RA, Group BCW (1999) Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. J Appl Physiol 87(4):1513–1520. https://doi.org/10.1152/jappl.1999.87.4.1513

    Article  Google Scholar 

  27. Bredella MA, Ghomi RH, Thomas BJ, Torriani M, Brick DJ, Gerweck AV, Misra M, Klibanski A, Miller KK (2010) Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity (Silver Spring) 18(11):2227–2233. https://doi.org/10.1038/oby.2010.5

    Article  Google Scholar 

  28. Albano D, Messina C, Vitale J, Sconfienza LM (2019) Imaging of sarcopenia: old evidence and new insights. Eur Radiol 30:2199–2208. https://doi.org/10.1007/s00330-019-06573-2

    Article  PubMed  Google Scholar 

  29. Lorentzon M, Cummings SR (2015) Osteoporosis: the evolution of a diagnosis. J Intern Med 277(6):650–661. https://doi.org/10.1111/joim.12369

    Article  CAS  PubMed  Google Scholar 

  30. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381. https://doi.org/10.1007/s00198-014-2794-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N, Hope S, Kanis JA, McCloskey EV, Poole KES, Reid DM, Selby P, Thompson F, Thurston A, Vine N, The National Osteoporosis Guideline G (2017) UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos 12(1):43. https://doi.org/10.1007/s11657-017-0324-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brown JP, Josse RG, Scientific Advisory Council of the Osteoporosis Society of C (2002) 2002 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada. CMAJ 167(10 Suppl):S1–S34

    PubMed  PubMed Central  Google Scholar 

  33. Tagliaferri C, Wittrant Y, Davicco M-J, Sp W, Vr C (2015) Muscle and bone, two interconnected tissues. Ageing Res Rev 21:55–70. https://doi.org/10.1016/j.arr.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  34. DiGirolamo DJ, Kiel DP, Esser KA (2013) Bone and skeletal muscle: neighbors with close ties. J Bone Miner Res 28(7):1509–1518. https://doi.org/10.1002/jbmr.1969

    Article  PubMed  Google Scholar 

  35. Pasco JA (2019) Age-related changes in muscle and bone. In: Duque G (ed) Osteosarcopenia: bone, muscle and fat interactions. Springer, Cham, pp 45–71

    Chapter  Google Scholar 

  36. Pasco JA, Nicholson GC, Kotowicz MA (2012) Cohort profile: Geelong osteoporosis study. Int J Epidemiol 41(6):1565–1575. https://doi.org/10.1093/ije/dyr148

    Article  PubMed  Google Scholar 

  37. Leslie WD (2009) Prediction of body composition from spine and hip bone densitometry. J Clin Densitom 12(4):428–433

    Article  PubMed  Google Scholar 

  38. Jain RK, Vokes T (2017) The prediction of body composition in african americans from spine and hip dual-energy absorptiometry. J Clin Densitom. https://doi.org/10.1016/j.jocd.2017.10.040

    Article  PubMed  Google Scholar 

  39. Salamat MR, Shanei A, Khoshhali M, Salamat AH, Siavash M, Asgari M (2014) Use of conventional regional DXA scans for estimating whole body composition. Arch Iran Med 17(10):674–678

    PubMed  Google Scholar 

  40. Rosenthall L, Falutz J (2010) Estimation of total-body and regional soft tissue composition from DXA bone densitometry of the lumbar spine and hip. J Clin Densitom 13(3):263–266

    Article  PubMed  Google Scholar 

  41. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A 69(5):547–558. https://doi.org/10.1093/gerona/glu010

    Article  Google Scholar 

  42. Gould H, Brennan SL, Kotowicz MA, Nicholson GC, Pasco JA (2014) Total and appendicular lean mass reference ranges for Australian men and women: the Geelong osteoporosis study. Calcif Tissue Int 94(4):363–372. https://doi.org/10.1007/s00223-013-9830-7

    Article  CAS  PubMed  Google Scholar 

  43. Pasco JA, Holloway-Kew KL, Tembo MC, Sui SX, Anderson KB, Rufus-Membere P, Hyde NK, Williams LJ, Kotowicz MA (2019) Normative data for lean mass using FNIH criteria in an Australian setting. Calcif Tissue Int 104(4):475–479. https://doi.org/10.1007/s00223-018-0506-1

    Article  CAS  PubMed  Google Scholar 

  44. Henry MJ, Pasco JA, Korn S, Gibson JE, Kotowicz MA, Nicholson GC (2010) Bone mineral density reference ranges for Australian men: Geelong Osteoporosis Study. Osteoporos Int 21(6):909–917. https://doi.org/10.1007/s00198-009-1042-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the men and women who participate in GOS.

Funding

The Geelong Osteoporosis Study has received funding from the National Health and Medical Council (NHMRC) Australia (Grant Nos. 299831, 251638, 628582).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Thackeray.

Ethics declarations

Conflict of interest

Matthew Thackeray, Neil R. Orford, Mark A. Kotowicz, Mohammadreza Mohebbi and Julie A. Pasco have no relevant financial or non-financial interests to disclose.

Ethical Approval

Ethics approval for the study was provided by Barwon Health Human Research Ethics Committee.

Human and Animal Rights

This study was performed in accordance with the ethical standards as laid down in the 1964 declaration of Helsinki and its later amendments.

Consent to Participate

All participants provided written, informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3842 KB)

Supplementary file2 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thackeray, M., Orford, N.R., Kotowicz, M.A. et al. Estimation of Whole-Body and Appendicular Lean Mass from Spine and Hip Dual Energy X-ray Absorptiometry: A Cross-Sectional Study. Calcif Tissue Int 110, 341–348 (2022). https://doi.org/10.1007/s00223-021-00922-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00922-4

Keywords

Navigation