Skip to main content

Advertisement

Log in

Human Relevance of Preclinical Studies on the Skeletal Impact of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis

  • Review Article
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease (IBD) is a relapsing chronic idiopathic inflammatory condition. The increased risks of fractures in the spine and decreased BMD at all weight-bearing skeletal sites have been reported in IBD patients. The understanding of the mechanisms of IBD-induced bone loss is far from complete. Appropriate animal models are a prerequisite for studying IBD-induced bone loss, which prompted us to undertake quantitative meta-analyses by pooling data from the available IBD models that assessed various bone parameters. Sufficient data for meta-analysis are obtained from chemically- but not genetically induced models. Among the chemically induced models, only the effects of dextran sulfate sodium (DSS) and 2,4,6-trinitrobenzene sulfonic acid (TNBS) on bone parameters have been reported. Meta-analysis showed that both DSS (Hedge’s g = 2.124, p = 0.001) and TNBS (Hedge's g = 6.292, p = 0.000) increased inflammatory disease severity. In pooled analysis, bone volumes in femur (Hedge's g = − 3.42, p = 0.000) and tibia (Hedge's g = − 2.49, p = 0.000) showed significant losses upon DSS administration. Similarly, bone formation rate was significantly reduced upon IBD induction (Hedge’s g = − 3.495, p = 0.006). Besides, cortical thickness was reduced and trabecular microstructure deteriorated by IBD induction. Insufficient data precluded us from determining the effect of IBD on bone strength and calciotropic hormones, as well as the impact of proinflammatory cytokines on bone turnover. This meta-analysis showed that IBD induction in rodents causes significant bone loss. Impaired osteoblast function appears to be the cause of this impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data are available upon request.

References

  1. Melek J, Sakuraba A (2014) Efficacy and safety of medical therapy for low bone mineral density in patients with inflammatory bowel disease: a meta-analysis and systematic review. Clin Gastroenterol Hepatol 12:32–44

    PubMed  Google Scholar 

  2. Lima CA, Lyra CA, Rocha RSG (2015) Risk factors for osteoporosis in inflammatory bowel disease patients. World J Gastrointest Pathophysiol 6:210–218. https://doi.org/10.4291/wjgp.v6.i4.210

    Article  PubMed  PubMed Central  Google Scholar 

  3. Szafors P, Che H, Barnetche T et al (2018) Risk of fracture and low bone mineral density in adults with inflammatory bowel diseases. A systematic literature review with meta-analysis. Osteoporos Int 29:2389–2397

    CAS  PubMed  Google Scholar 

  4. Alatab S, Sepanlou SG, Ikuta K et al (2020) The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 5:17–30

    Google Scholar 

  5. Randhawa PK, Singh K, Singh N, Jaggi AS (2014) A review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol 18:279–288

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Goyal N, Rana A, Ahlawat A et al (2014) Animal models of inflammatory bowel disease: a review. Inflammopharmacology 22:219–233

    PubMed  Google Scholar 

  7. Alex P, Zachos NC, Nguyen T et al (2009) Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis 15:341–352

    PubMed  PubMed Central  Google Scholar 

  8. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M (2014) Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 104:1–15

    Google Scholar 

  9. Elson CO, Beagley KW, Sharmanov AT et al (1996) Hapten-induced model of murine inflammatory bowel disease: mucosa immune responses and protection by tolerance. J Immunol 157:2174–2185

    CAS  PubMed  Google Scholar 

  10. Antoniou E, Margonis GA, Angelou A et al (2016) The TNBS-induced colitis animal model: an overview. Ann Med Surg 11:9–15

    Google Scholar 

  11. Silene MDS, Susana SF, Elena T et al (2010) Anti-inflammatory intestinal activity of Abarema cochliacarpos (Gomes) Barneby & Grimes in TNBS colitis model. J Ethnopharmacol 128:467–475

    Google Scholar 

  12. Ge X, Chen Z, Xu Z et al (2018) The effects of dihydroartemisinin on inflammatory bowel disease-related bone loss in a rat model. Exp Biol Med 243:715–724. https://doi.org/10.1177/1535370218769420

    Article  CAS  Google Scholar 

  13. Narayanan SA, Metzger CE, Bloomfield SA, Zawieja DC (2018) Inflammation-induced lymphatic architecture and bone turnover changes are ameliorated by irisin treatment in chronic inflammatory bowel disease. FASEB J 32:4848–4861

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Metzger C, Narayanan SA, Zawieja DC, Bloomfield SA (2019) A moderately elevated soy protein diet mitigates inflammatory changes in gut and in bone turnover during chronic TNBS-induced inflammatory bowel disease. Appl Physiol Nutr Metab 44:595–605

    CAS  PubMed  Google Scholar 

  15. Luo JS, Zhao X, Yang Y (2020) Effects of emodin on inflammatory bowel disease-related osteoporosis. Biosci Rep. https://doi.org/10.1042/BSR20192317

    Article  PubMed  PubMed Central  Google Scholar 

  16. Metzger CE, Narayanan SA, Elizondo JP et al (2019) DSS-induced colitis produces inflammation-induced bone loss while irisin treatment mitigates the inflammatory state in both gut and bone. Sci Rep 9:1–15

    Google Scholar 

  17. Lin CL, Moniz C, Chow JWM (2000) Treatment with fluoride or bisphosphonates prevents bone loss associated with colitis in the rat. Calcif Tissue Int 67:373–377

    CAS  PubMed  Google Scholar 

  18. Metzger CE, Narayanan ÃA, Zawieja ÃDC, Bloomfield SA (2017) Inflammatory bowel disease in a rodent model alters osteocyte protein levels controlling bone turnover. J Bone Min Res 32:802–813

    CAS  Google Scholar 

  19. Hamdani G, Gabet Y, Rachmilewitz D et al (2008) Dextran sodium sulfate-induced colitis causes rapid bone loss in mice. Bone 43:945–950

    CAS  PubMed  Google Scholar 

  20. Morgan S, Hooper KM, Milne EM et al (2019) Azathioprine has a deleterious effect on the bone health of mice with DSS-induced inflammatory bowel disease. Int J Mol Sci 20:1–11

    Google Scholar 

  21. Harris L, Senagore P, Young VB, Mccabe LR (2009) Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol Gastrointest Liver Physiol 296:1020–1029. https://doi.org/10.1152/ajpgi.90696.2008

    Article  CAS  Google Scholar 

  22. Ke K, Chen TH-P, Arra M et al (2019) Attenuation of NF-κ B in intestinal epithelial cells is sufficient to mitigate the bone loss comorbidity of experimental mouse colitis. J Bone Min Res 34:1880–1893

    CAS  Google Scholar 

  23. Irwin R, Raehtz S, Parameswaran N, Mccabe XLR (2016) Intestinal inflammation without weight loss decreases bone density and growth. Am J Physiol Regul Integr Comp Physiol 311:1149–1157

    Google Scholar 

  24. Royer BB, Pierroz DD, Velin D et al (2013) Effects of an interleukin-15 antagonist on systemic and skeletal alterations in mice with DSS-induced colitis. Am J Pathol 182:2155–2167

    Google Scholar 

  25. Lavoie B, Roberts J, Haag M et al (2019) Gut-derived serotonin contributes to bone deficits in colitis. Pharmacol Res 140:75–84

    CAS  PubMed  Google Scholar 

  26. Freeman P, Hedges L, Olkin I (1986) Statistical methods for meta-analysis. Biometrics 42:454. https://doi.org/10.2307/2531069

    Article  Google Scholar 

  27. Vesterinen HM, Sena ES, Egan KJ et al (2014) Meta-analysis of data from animal studies: a practical guide. J Neurosci Methods 221:92–102

    CAS  PubMed  Google Scholar 

  28. Cochran WG (1954) The combination of estimates from different experiments. Biometrics. https://doi.org/10.2307/3001666

    Article  Google Scholar 

  29. Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J (2006) Assessing heterogeneity in meta-analysis: Q statistic or I 2 Index? Psychol Methods. https://doi.org/10.1037/1082-989X.11.2.193

    Article  PubMed  Google Scholar 

  30. Papet I, Me Y, Godin J et al (2008) HLA-B27 rats develop osteopaenia through increased bone resorption without any change in bone formation. J Musculoskelet Neuronal Interact 8:251–256

    CAS  PubMed  Google Scholar 

  31. Links C, Gamsjaeger S, Srivastava AK et al (2014) Altered Bone material properties in HLA-B27 rats include reduced mineral to matrix ratio and altered collagen cross-links. J Bone Min Res 29:2382–2391

    Google Scholar 

  32. Saul D, Schilling AF, Kosinsky RL (2018) Intestinal inflammation and tumor burden as determinants for bone fragility in APC-driven tumorigenesis. Inflamm Bowel Dis 24:2386–2393

    PubMed  Google Scholar 

  33. Holgersen K, Dobie R, Farquharson C et al (2015) Piroxicam treatment augments bone abnormalities in interleukin-10 knockout mice. Inflamm Bowel Dis 21:257–266

    PubMed  Google Scholar 

  34. Glenn J, Fielding K, Chen J et al (2014) Long-term vitamin D3 supplementation does not prevent colonic inflammation or modulate bone health in IL-10 knockout mice at young adulthood. Nutrients 6:3847–3862

    PubMed  PubMed Central  Google Scholar 

  35. Cohen SL, Moore AM, Ward WE (2005) Flaxseed oil and inflammation-associated bone abnormalities in interleukin-10 knockout mice. J Nutr Biochem 16:368–374

    CAS  PubMed  Google Scholar 

  36. Irwin R, Lee T, Young VB et al (2013) Colitis-induced bone loss is gender dependent and associated with increased inflammation. Inflamm Bowel Dis 19:1586–1597

    PubMed  PubMed Central  Google Scholar 

  37. Gelb NIR, Rachmilewitz D, Karmeli F, Weinreb M (2004) Interleukin 10—deficient mice develop osteopenia, decreased bone formation, and mechanical fragility of long bones. Gastroenterology 127:792–801

    PubMed  Google Scholar 

  38. Ciucci T, Ibáñez L, Boucoiran A et al (2015) Bone marrow Th17 TNF α cells induce osteoclast differentiation, and link bone destruction to IBD. Gut 64:1072–1081

    CAS  PubMed  Google Scholar 

  39. Radhakrishnan VM, Ramalingam R, Larmonier CB et al (2013) Post-translational loss of renal trpv5 calcium channel expression, Ca2+ wasting, and bone loss in experimental colitis. Gastroenterology 145:613–624. https://doi.org/10.1053/j.gastro.2013.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dobie R, Macrae VE, Pass C et al (2018) Suppressor of cytokine signaling 2 (Socs2) deletion protects bone health of mice with DSS-induced inflammatory bowel disease. Dis Model Mech. https://doi.org/10.1242/dmm.028456

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lin C, Moniz C, Chambers TJ, Chao W (1996) Colitis causes bone loss in rats through suppression of bone formation. Gastroenterology 111:1263–1271

    CAS  PubMed  Google Scholar 

  42. Sartor RB (1997) Review article: How relevant to human inflammatory bowel disease are current animal models of intestinal inflammation? Aliment Pharmacol Ther 11:89–97

    PubMed  Google Scholar 

  43. Pietropaoli D, Del Pinto R, Corridoni D et al (2014) Occurrence of spontaneous periodontal disease in the SAMP1/YitFc murine model of Crohn disease. J Periodontol 85:1799–1805

    PubMed  PubMed Central  Google Scholar 

  44. Haschka J, Hirschmann S, Kleyer A et al (2016) High-resolution quantitative computed tomography demonstrates structural defects in cortical and trabecular bone in IBD patients. J Crohn’s Colitis 10:532–540. https://doi.org/10.1093/ecco-jcc/jjw012

    Article  Google Scholar 

  45. Komaki Y, Komaki F, Micic D et al (2019) Risk of fractures in inflammatory bowel diseases: a systematic review and meta-analysis. J Clin Gastroenterol 53:441–448

    CAS  PubMed  Google Scholar 

  46. Johannesdottir F, Aspelund T, Siggeirsdottir K et al (2012) Mid-thigh cortical bone structural parameters, muscle mass and strength, and association with lower limb fractures in older men and women (AGES-Reykjavik Study). Calcif Tissue Int 90:354–364. https://doi.org/10.1007/s00223-012-9585-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Duggan SN, Purcell C, Kilbane M et al (2015) An association between abnormal bone turnover, systemic inflammation, and osteoporosis in patients with chronic pancreatitis: a case-matched study. Am J Gastroenterol 110:336–345

    CAS  PubMed  Google Scholar 

  48. Hardy R, Cooper M (2009) Bone loss in inflammatory disorders. J Endocrinol 201:309–320

    CAS  PubMed  Google Scholar 

  49. Weitzmann M (2013) The role of inflammatory cytokines, the RANKL/OPG Axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica (Cairo) 2013:29

    Google Scholar 

  50. Collins FL, Williams JO, Bloom AC et al (2017) CCL3 and MMP-9 are induced by TL1A during death receptor 3 (TNFRSF25)-dependent osteoclast function and systemic bone loss. Bone 97:94–104

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Collins FL, Stone MD, Turton J et al (2019) Oestrogen-deficiency induces bone loss by modulating CD14 + monocyte and CD4 + T cell DR3 expression and serum TL1A levels. BMC Musculoskelet Disord 20:326

    PubMed  PubMed Central  Google Scholar 

  52. Giuliani N, Sansoni P, Girasole G et al (2001) Serum interleukin-6, soluble interleukin-6 receptor and soluble gp130 exhibit different patterns of age- and menopause-related changes. Exp Gerontol 36:547–557. https://doi.org/10.1016/S0531-5565(00)00220-5

    Article  CAS  PubMed  Google Scholar 

  53. Koh JM, Khang YH, Jung CH et al (2005) Higher circulating hsCRP levels are associated with lower bone mineral density in healthy pre- and postmenopausal women: evidence for a link between systemic inflammation and osteoporosis. Osteoporos Int 16:1263–1271

    CAS  PubMed  Google Scholar 

  54. Khosla S, Peterson JM, Egan K et al (1994) Circulating cytokine levels in osteoporotic and normal women. J Clin Endocrinol Metab 79:707–711

    CAS  PubMed  Google Scholar 

  55. Mckane WR, Khosla S, Peterson JM et al (1994) Circulating levels of cytokines that modulate bone resorption: effects of age and menopause in women. J Bone Miner Res 9:1313–1318. https://doi.org/10.1002/jbmr.5650090821

    Article  CAS  PubMed  Google Scholar 

  56. Kania D, Binkley N, Checovich M et al (1995) Elevated plasma levels of interleukin-6 in postmenopausal women do not correlate with bone density. J Am Geriatr Soc 43:236–239. https://doi.org/10.1111/j.1532-5415.1995.tb07328.x

    Article  CAS  PubMed  Google Scholar 

  57. Ganesan K, Teklehaimanot S, Tran TH et al (2005) Relationship of C-reactive protein and bone mineral density in community-dwelling elderly females. J Natl Med Assoc 97(3):329–333

    PubMed  PubMed Central  Google Scholar 

  58. Au A, Feher A, McPhee L et al (2016) Estrogens, inflammation and cognition. Front Neuroendocrinol 40:87–100

    CAS  PubMed  Google Scholar 

  59. Karatzoglou I, Yavropoulou MP, Pikilidou M et al (2014) Postprandial response of bone turnover markers in patients with Crohn’s disease. World J Gastroenterol 20:9534–9540

    PubMed  PubMed Central  Google Scholar 

  60. Gilman J, Shanahan F, Cashman K (2006) Altered levels of biochemical indices of bone turnover and bone-related vitamins in patients with Crohn’s disease and ulcerative colitis. Aliment Pharmacol Ther 23:1007–1016. https://doi.org/10.1111/j.1365-2036.2006.02835.x

    Article  CAS  PubMed  Google Scholar 

  61. Vihinen MK, Kolho KL, Ashorn M et al (2008) Bone turnover and metabolism in paediatric patients with inflammatory bowel disease treated with systemic glucocorticoids. Eur J Endocrinol 159:693–698

    CAS  PubMed  Google Scholar 

  62. Güerri FR, Nogués X, Quesada GJ et al (2013) Microindentation for in vivo measurement of bone tissue material properties in atypical femoral fracture patients and controls. J Bone Miner Res 28:162–168. https://doi.org/10.1002/jbmr.1731

    Article  CAS  Google Scholar 

  63. Diez-Perez A, Güerri R, Nogues X et al (2010) Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J Bone Miner Res 25:1877–1885. https://doi.org/10.1002/jbmr.73

    Article  PubMed  PubMed Central  Google Scholar 

  64. Philippe K, Enrico DA, Peter V, Dieter HP (2013) Finite element analysis for prediction of bone strength. Bonekey Rep. https://doi.org/10.1038/bonekey.2013.120

    Article  Google Scholar 

Download references

Funding

This study was supported by Central Drug Research Institute (Grant No. MLP117). Supporting grant: Council of Scientific and Industrial Research, Government of India. Swati Rajput would like to thank the Department of Biotechnology, Govt. of India for graduate fellowship (Ref No. DBT/2018/CDRI/1047). Poonam Mehta would like to thank the University Grants Commission for graduate fellowship (Ref. No. 460/CSIR-UGC NET DEC.2017). The CDRI communication number is 10182.

Author information

Authors and Affiliations

Authors

Contributions

SR conducted literature screening and wrote the manuscript; PM performed statistical analyses of the extracted data; MM conducted literature screening and wrote the manuscript; SR conceived the idea, performed statistical analyses of data and wrote the manuscript; NC conceived the idea, conducted literature screening and wrote the manuscript.

Corresponding authors

Correspondence to Singh Rajender or Naibedya Chattopadhyay.

Ethics declarations

Disclosures

Swati Rajput, Poonam Mehta, Monika Mittal, Singh Rajender, and Naibedya Chattopadhyay declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, S., Mehta, P., Mittal, M. et al. Human Relevance of Preclinical Studies on the Skeletal Impact of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Calcif Tissue Int 108, 708–724 (2021). https://doi.org/10.1007/s00223-021-00808-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00808-5

Keywords

Navigation