Skip to main content

Advertisement

Log in

Higher Circulating Parathormone is Associated with Smaller and Weaker Bones in Obese Children

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Obese children have disadvantageous bone geometry, bone of low quality, and reduced strength at non-weight-bearing skeletal sites. The aim of our study was to investigate the role of parathormone (PTH) and the Wnt/β-catenin signaling pathway and its inhibitors, sclerostin and Dickkopf-1 (DKK1), as negative modulators of fat mass on bone. This was a cross-sectional observational study performed in 44 (26 males and 18 females) obese subjects, aged 11.41 ± 2.61 years. Thirty-seven normal-weight, healthy children (22 males and 15 females) of the same chronological age served as controls for the biochemical parameters and bone markers, while the data on bone geometry were evaluated according to our normative data obtained previously in a group of 325 control children. Digitalized X-rays were evaluated at the level of the second metacarpal bone for the determination of bone geometry: total cross-sectional area (TCSA), cortical area (CA), medullary area (MA), and bone strength (bending breaking resistance index [BBRI]). Serum bone markers (intact procollagen-1N-terminal propeptide [P1NP] and serum carboxy-terminal telopeptide of collagen-1 [CTX]), sclerostin, DKK1, PTH, 25-hydroxyvitamin D and were also measured. Data for TCSA, CA, MA, and BBRI are expressed as a standard deviation score in order to normalize them for age and sex. TCSA (mean ± SD, −2.92 ± 2.71), CA (−0.60 ± 0.82), MA (−0.45 ± 1.14), and BBRI (−2.65 ± 2.31) were all significantly smaller than in controls (p < 0.01). Serum PTH (36.27 ± 23.89 vs. 19.33 ± 11.37 pg/mL) and CTX (1.55 ± 0.44 vs. 1.34 ± 0.46 ng/mL) were significantly increased (p < 0.05) in the obese children compared to controls, while sclerostin was significantly decreased (24.67 ± 10.06 vs. 30.42 ± 11.01 pmol/L, p < 0.05). P1NP was also significantly increased (p < 0.01). PTH was negatively correlated with TCSA, CA, and BBRI. Bone turnover is higher in obese children than in controls, and this is associated with smaller and apparently weaker bones. Higher PTH and lower sclerostin levels may be responsible for these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bakker I, Twisk JW, Van Mechelen W, Kemper HC (2003) Fat-free body mass is the most important body composition determinant of 10-yr longitudinal development of lumbar bone in adult men and women. J Clin Endocrinol Metab 88:2607–2613

    Article  CAS  PubMed  Google Scholar 

  2. Taes YE, Lapauw B, Vanbillemont G, Bogaert V, De Bacquer D, Zmierczak H, Goemaere S, Kaufman JM (2009) Fat mass is negatively associated with cortical bone size in young healthy male siblings. J Clin Endocrinol Metab 94:2325–2331

    Article  CAS  PubMed  Google Scholar 

  3. Rocher E, Chappard C, Jaffre C, Benhamou CL, Courteix D (2008) Bone mineral density in prepubertal obese and control children: relation to body weight, lean mass, and fat mass. J Clin Endocrinol Metab 26:73–78

    Google Scholar 

  4. Janicka A, Wren TA, Sanchez MM, Dorey F, Kim PS, Mittelman SD, Gilsanz V (2007) Fat mass is not beneficial to bone in adolescents and young adults. J Clin Endocrinol Metab 92:143–147

    Article  CAS  PubMed  Google Scholar 

  5. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, Pfeilschifter J, Silverman S, Díez-Pérez A, Lindsay R, Saag KG, Netelenbos JC, Gehlbach S, Hooven FH, Flahive J, Adachi JD, Rossini M, Lacroix AZ, Roux C, Sambrook PN, Siris ES, Investigators Glow (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124:1043–1050

    Article  PubMed  Google Scholar 

  6. Ellis KJ, Shypailo RJ, Wong WW et al (2003) Bone mineral mass in overweight and obese children: diminished or enhanced? Acta Diabetol 40:274–277

    Article  Google Scholar 

  7. Leonard MB, Shults J, Wilson BA et al (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523

    CAS  PubMed  Google Scholar 

  8. Manzoni P, Brambilla P, Pietrobelli A et al (1996) Influence of body composition on bone mineral content in children and adolescents. Am J Clin Nutr 64:603–607

    CAS  PubMed  Google Scholar 

  9. Hasanoglu A, Bideci A, Cinaz P et al (2000) Bone mineral density in childhood obesity. J Pediatr Endocrinol Metab 13:307–311

    Article  CAS  PubMed  Google Scholar 

  10. Goulding A, Taylor RW, Jones IE et al (2000) Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord 24:627–632

    Article  CAS  PubMed  Google Scholar 

  11. Goulding A, Taylor RW, Jones IE et al (2002) Spinal overload: a concern for obese children and adolescents? Osteoporos Int 13:835–840

    Article  CAS  PubMed  Google Scholar 

  12. Longhi S, Pasquino B, Calcagno A, Bertelli E, Olivieri I, Di Iorgi N, Radetti G (2013) Small metacarpal bones of low quality in obese children. Clin Endocrinol (Oxf) 78:79–85

    Article  Google Scholar 

  13. Baron R, Rawadi G (2007) Targeting the Wnt/β-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148:2635–2643

    Article  CAS  PubMed  Google Scholar 

  14. Rossini M, Gatti D, Adami S (2013) Involvement of WNT/β-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int 93:121–132

    Article  CAS  PubMed  Google Scholar 

  15. Gatti D, Viapiana O, Idolazzi L, Fracassi E, Rossini M, Adami S (2011) The waning of teriparatide effect on bone formation markers in postmenopausal osteoporosis is associated with increasing serum levels of DKK1. J Clin Endocrinol Metab 96:1555–1559

    Article  CAS  PubMed  Google Scholar 

  16. Gatti D, Rossini M, Viapiana O, Povino MR, Liuzza S, Fracassi E, Idolazzi L, Adami S (2013) Teriparatide treatment in adult patients with osteogenesis imperfecta type I. Calcif Tissue Int 93:448–452

    Article  CAS  PubMed  Google Scholar 

  17. Gatti D, Viapiana O, Adami S, Idolazzi L, Fracassi E, Rossini M (2012) Bisphosphonate treatment of postmenopausal osteoporosis is associated with a dose dependent increase in serum sclerostin. Bone 50:739–742

    Article  CAS  PubMed  Google Scholar 

  18. Gatti D, Viapiana O, Fracassi E, Idolazzi L, Dartizio C, Povino MR, Adami S, Rossini M (2012) Sclerostin and DKK1 in postmenopausal osteoporosis treated with denosumab. J Bone Miner Res 27:2259–2263

    Article  CAS  PubMed  Google Scholar 

  19. Cacciari E, Milani S, Balsamo A, Spada E, Bona G, Cavallo L, Cerutti F, Gargantini L, Greggio N, Tonini G, Cicognani A (2006) Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J Endocrinol Invest 29:581–593

    Article  CAS  PubMed  Google Scholar 

  20. Tanner JM (1962) Growth at adolescence, 2nd edn. Blackwell, Oxford

    Google Scholar 

  21. McCarthy HD, Jarrett KV, Crawley HF (2001) The development of waist circumference percentiles in British children aged 5.0–16.9 y. Eur J Clin Nutr 55:902–907

    Article  CAS  PubMed  Google Scholar 

  22. Greulich WW, Pyle SL (1969) Radiographic atlas of skeletal development of the hand and wrist, 2nd edn. Stanford University Press, Stanford

    Google Scholar 

  23. Zamberlan N, Radetti G, Paganini C, Gatti D, Rossini M, Braga V, Adami S (1996) Evaluation of cortical thickness and bone density by roentgen microdensitometry in growing males and females. Eur J Pediatr 155:377–382

    Article  CAS  PubMed  Google Scholar 

  24. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608

    Article  CAS  PubMed  Google Scholar 

  25. Genant HK, Engelke K, Fuerst T, Glüer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11:707–730

    Article  CAS  PubMed  Google Scholar 

  26. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ (2001) Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy X-ray absorptiometry study. J Pediatr 139:509–515

    Article  CAS  PubMed  Google Scholar 

  27. Bell NH, Epstein S, Greene A, Shary J, Oexmann MJ, Shaw S (1985) Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest 76:370–373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Andersen T, McNair P, Hyldstrup L, Fogh-Andersen N, Nielsen TT, Astrup A, Transbøl I (1988) Secondary hyperparathyroidism of morbid obesity regresses during weight reduction. Metabolism 37:425–428

    Article  CAS  PubMed  Google Scholar 

  29. Grethen E, McClintock R, Gupta CE, Jones R, Cacucci BM, Diaz D, Fulford AD, Perkins SM, Considine RV, Peacock M (2011) Vitamin D and hyperparathyroidism in obesity. J Clin Endocrinol Metab 96:1320–1326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Grethen E, Hill KM, Jones R, Cacucci BM, Gupta CE, Acton A, Considine RV, Peacock M (2012) Serum leptin, parathyroid hormone, 1,25-dihydroxyvitamin D, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J Clin Endocrinol Metab 97:1655–1662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Maetani M, Maskarinec G, Franke AA, Cooney RV (2009) Association of leptin, 25-hydroxyvitamin D, and parathyroid hormone in women. Nutr Cancer 61:225–231

    Article  CAS  PubMed  Google Scholar 

  32. Matsunuma A, Kawane T, Maeda T, Hamada S, Horiuchi N (2004) Leptin corrects increased gene expression of renal 25-hydroxyvitamin D3–1 α-hydroxylase and -24-hydroxylase in leptin-deficient, ob/ob mice. Endocrinology 145:1367–1375

    Article  CAS  PubMed  Google Scholar 

  33. O’Brien CA, Nakashima T, Takayanagi H (2013) Osteocyte control of osteoclastogenesis. Bone 54:258–263

    Article  PubMed Central  PubMed  Google Scholar 

  34. Takayanagi T, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 integrate RANKL signaling in the terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  CAS  PubMed  Google Scholar 

  35. Kudo O, Fuzikawa Y, Itonaga I, Sabokbar A, Torisu T, Athanasou NA (2002) Proinflammatory cytokine (TNF/IL-1) induction of human osteoclast formation. J Pathol 198:220–227

    Article  CAS  PubMed  Google Scholar 

  36. Palmqvist P, Persson E, Conaway HH, Lerner UH (2002) IL6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of RANKL, osteoprotegerin, RANK in mouse calvariae. J Immunol 169:3353–3362

    Article  CAS  PubMed  Google Scholar 

  37. Sabokbar A, Kudo O, Athanasou NA (2003) Two distinct cellular mechanisms of osteoclast formation and bone resorption in periprosthetic osteolysis. J Orthop Res 21:73–80

    Article  CAS  PubMed  Google Scholar 

  38. Bellido T, Saini V, Pajevic PD (2013) Effects of PTH on osteocyte function. Bone 54:250–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Viapiana O, Fracassi E, Troplini S, Idolazzi L, Rossini M, Adami S, Gatti D (2013) Sclerostin and DKK1 in primary hyperparathyroidism. Calcif Tissue Int 92:324–329

    Article  CAS  PubMed  Google Scholar 

  40. Semenov M, Tamai K, He X (2005) SOST is a ligand for LRP5/LRP6 and a WNT signaling inhibitor. J Biol Chem 280:26770–26775

    Article  CAS  PubMed  Google Scholar 

  41. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signalling. J Biol Chem 280:19883–19887

    Article  CAS  PubMed  Google Scholar 

  42. Choi HY, Dieckmann M, Herz J, Niemeier A (2009) Lrp4, a novel receptor for dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS One 4:e7930

    Article  PubMed Central  PubMed  Google Scholar 

  43. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den Ende J, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van Hul W (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:537–543

    Article  CAS  PubMed  Google Scholar 

  44. Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68:577–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Viapiana O, Fracassi E, Troplini S, Idolazzi L, Rossini M, Adami S, Gatti D (2013) Sclerostin and DKK1 in primary hyperparathyroidism. Calcif Tissue Int 92:324–329

    Article  CAS  PubMed  Google Scholar 

  46. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875

    Article  CAS  PubMed  Google Scholar 

  47. Modder UI, Hoey KA, Amin S et al (2011) Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res 26:373–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Garnero P, Sornay-Rendu E, Munoz F, Borel O, Chapurlat RD (2013) Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporos Int 24:489–494

    Article  CAS  PubMed  Google Scholar 

  49. Szulc P, Bertholon C, Borel O, Marchand F, Chapurlat R (2013) Lower fracture risk in older men with higher sclerostin concentration: a prospective analysis from the MINOS study. J Bone Miner Res 28:855–864

    Article  CAS  PubMed  Google Scholar 

  50. Reinehr T, de Sousa G, Alexy U, Kersting M, Andler W (2007) Vitamin D status and parathyroid hormone in obese children before and after weight loss. Eur J Endocrinol 157:225–232

    Article  CAS  PubMed  Google Scholar 

  51. Albala C, Yanez M, Devoto E, Sostin C, Zeballos L, Santos JL (1996) Obesity as a protective factor for postmenopausal osteoporosis. Int J Obes Relat Metab Disord 20:1027–1032

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted with Dr. Lan Nguyen for her skilful correction of the english version of the manuscript, Dr. Antonio Fanolla for performing the statistical analysis and Caterina Fraccarollo for the ELISA assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Radetti.

Additional information

Giorgio Radetti, Roberto Franceschi, Silvano Adami, Silvia Longhi, Maurizio Rossini and Davide Gatti declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radetti, G., Franceschi, R., Adami, S. et al. Higher Circulating Parathormone is Associated with Smaller and Weaker Bones in Obese Children. Calcif Tissue Int 95, 1–7 (2014). https://doi.org/10.1007/s00223-014-9853-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9853-8

Keywords

Navigation