Skip to main content
Log in

Normative Calcaneal Quantitative Ultrasound Data as an Estimation of Skeletal Development in Swedish Children and Adolescents

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

We present age- and gender-specific normative bone status data evaluated by quantitative ultrasound (QUS) in the calcaneus with the Lunar Achilles device and compare these estimates with bone mineral content (BMC) and bone mineral density (BMD) estimated by dual X-ray absorptiometry (DXA). Included were a sample of 518 population-based collected Swedish girls and 558 boys aged 6–19 years. QUS measurements included speed of sound (SOS), broadband ultrasound attenuation (BUA), and stiffness index (SI) in the calcaneus. DXA measurements included BMC and BMD in the femoral neck (FN), lumbar spine (L2–L4), and total body (TB). Height and weight were measured with standard equipment. Age, height, and weight were significantly associated with SOS, BUA, and SI. Compared to SOS, in both girls and boys there was a higher correlation between BUA and FN BMC (r = 0.71 and r = 0.73, respectively), FN BMD (r = 0.68 and r = 0.67, respectively), L2–L4 BMC (r = 0.70 and r = 0.64, respectively), L2–L4 BMD (r = 0.69 and r = 0.64, respectively), TB BMC (r = 0.76 and r = 0.75, respectively), and TB BMD (r = 0.74 and r = 0.74, respectively). The correlations between SOS and FN BMC (r = 0.38 and r = 0.52, respectively), FN BMD (r = 0.41 and r = 0.52, respectively), L2–L4 BMC (r = 0.31 and r = 0.40, respectively), L2–L4 BMD (r = 0.32 and r = 0.41, respectively), TB BMC (r = 0.42 and r = 0.49, respectively), and TB BMD (r = 0.48 and r = 0.54, respectively) were lower, although still significant (all P < 0.001). BUA seems to be the QUS parameter that best resembles the changes in BMC during growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahlborg HG, Johnell O, Nilsson BE, Jeppsson S, Rannevik G, Karlsson MK (2001) Bone loss in relation to menopause: a prospective study during 16 years. Bone 28:327–331

    Article  CAS  PubMed  Google Scholar 

  2. Hans D, Dargent-Molina P, Schott AM, Sebert JL, Cormier C, Kotzki PO, Delmas PD, Pouilles JM, Breart G, Meunier PJ (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514

    Article  CAS  PubMed  Google Scholar 

  3. Karlsson MK, Duan Y, Ahlborg H, Obrant KJ, Johnell O, Seeman E (2001) Age, gender, and fragility fractures are associated with differences in quantitative ultrasound independent of bone mineral density. Bone 28:118–122

    Article  CAS  PubMed  Google Scholar 

  4. Hui SL, Slemenda CW, Johnston CC Jr (1990) The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1:30–34

    Article  CAS  PubMed  Google Scholar 

  5. Specker BL, Schoenau E (2005) Quantitative bone analysis in children: current methods and recommendations. J Pediatr 146:726–731

    Article  PubMed  Google Scholar 

  6. Njeh CF, Fuerst T, Diessel E, Genant HK (2001) Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int 12:1–15

    CAS  PubMed  Google Scholar 

  7. Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R (1999) Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab 84:4702–4712

    Article  CAS  PubMed  Google Scholar 

  8. Barrett-Connor E, Siris ES, Wehren LE, Miller PD, Abbott TA, Berger ML, Santora AC, Sherwood LM (2005) Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res 20:185–194

    Article  PubMed  Google Scholar 

  9. Bacon WE, Maggi S, Looker A, Harris T, Nair CR, Giaconi J, Honkanen R, Ho SC, Peffers KA, Torring O, Gass R, Gonzalez N (1996) International comparison of hip fracture rates in 1988–89. Osteoporos Int 6:69–75

    Article  CAS  PubMed  Google Scholar 

  10. Baroncelli GI (2008) Quantitative ultrasound methods to assess bone mineral status in children: technical characteristics, performance, and clinical application. Pediatr Res 63:220–228

    Article  PubMed  Google Scholar 

  11. Fielding KT, Nix DA, Bachrach LK (2003) Comparison of calcaneus ultrasound and dual X-ray absorptiometry in children at risk of osteopenia. J Clin Densitom 6:7–15

    Article  PubMed  Google Scholar 

  12. Bauer DC, Gluer CC, Cauley JA, Vogt TM, Ensrud KE, Genant HK, Black DM (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 157:629–634

    Article  CAS  PubMed  Google Scholar 

  13. Meszaros S, Toth E, Ferencz V, Csupor E, Hosszu E, Horvath C (2007) Calcaneous quantitative ultrasound measurements predicts vertebral fractures in idiopathic male osteoporosis. Joint Bone Spine 74:79–84

    Article  PubMed  Google Scholar 

  14. Schalamon J, Singer G, Schwantzer G, Nietosvaara Y (2004) Quantitative ultrasound assessment in children with fractures. J Bone Miner Res 19:1276–1279

    Article  PubMed  Google Scholar 

  15. Wang Q, Nicholson PH, Timonen J, Alen M, Moilanen P, Suominen H, Cheng S (2008) Monitoring bone growth using quantitative ultrasound in comparison with DXA and pQCT. J Clin Densitom 11:295–301

    Article  PubMed  Google Scholar 

  16. Mughal MZ, Ward K, Qayyum N, Langton CM (1997) Assessment of bone status using the contact ultrasound bone analyser. Arch Dis Child 76:535–536

    Article  CAS  PubMed  Google Scholar 

  17. Mughal MZ, Langton CM, Utretch G, Morrison J, Specker BL (1996) Comparison between broadband ultrasound attenuation of the calcaneum and total body bone mineral density in children. Acta Paediatr 85:663–665

    Article  CAS  PubMed  Google Scholar 

  18. van den Bergh JP, Noordam C, Ozyilmaz A, Hermus AR, Smals AG, Otten BJ (2000) Calcaneal ultrasound imaging in healthy children and adolescents: relation of the ultrasound parameters BUA and SOS to age, body weight, height, foot dimensions and pubertal stage. Osteoporos Int 11:967–976

    Article  PubMed  Google Scholar 

  19. Sawyer A, Moore S, Fielding KT, Nix DA, Kiratli J, Bachrach LK (2001) Calcaneus ultrasound measurements in a convenience sample of healthy youth. J Clin Densitom 4:111–120

    Article  CAS  PubMed  Google Scholar 

  20. Halaba ZP, Pluskiewicz W (2004) Quantitative ultrasound in the assessment of skeletal status in children and adolescents. Ultrasound Med Biol 30:239–243

    Article  PubMed  Google Scholar 

  21. Zadik Z, Price D, Diamond G (2003) Pediatric reference curves for multi-site quantitative ultrasound and its modulators. Osteoporos Int 14:857–862

    Article  PubMed  Google Scholar 

  22. Wunsche K, Wunsche B, Fahnrich H, Mentzel HJ, Vogt S, Abendroth K, Kaiser WA (2000) Ultrasound bone densitometry of the os calcis in children and adolescents. Calcif Tissue Int 67:349–355

    Article  CAS  PubMed  Google Scholar 

  23. Linden C, Alwis G, Ahlborg H, Gardsell P, Valdimarsson O, Stenevi-Lundgren S, Besjakov J, Karlsson MK (2007) Exercise, bone mass and bone size in prepubertal boys: one-year data from the Pediatric Osteoporosis Prevention Study. Scand J Med Sci Sports 17:340–347

    CAS  PubMed  Google Scholar 

  24. Valdimarsson O, Linden C, Johnell O, Gardsell P, Karlsson MK (2006) Daily physical education in the school curriculum in prepubertal girls during 1 year is followed by an increase in bone mineral accrual and bone width—data from the prospective controlled Malmo Pediatric Osteoporosis Prevention Study. Calcif Tissue Int 78:65–71

    Article  CAS  PubMed  Google Scholar 

  25. Duke PM, Litt IF, Gross RT (1980) Adolescents’ self-assessment of sexual maturation. Pediatrics 66:918–920

    CAS  PubMed  Google Scholar 

  26. MacKelvie KJ, Khan KM, McKay HA (2002) Is there a critical period for bone response to weight-bearing exercise in children and adolescents? A systematic review. Br J Sports Med 36:250–257

    Article  CAS  PubMed  Google Scholar 

  27. Lewiecki EM, Gordon CM, Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Silverman S, Bishop NJ, Leonard MB, Bianchi ML, Kalkwarf HJ, Langman CB, Plotkin H, Rauch F, Zemel BS (2008) Special report on the 2007 adult and pediatric Position Development Conferences of the International Society for Clinical Densitometry. Osteoporos Int 19:1369–1378

    Article  CAS  PubMed  Google Scholar 

  28. Jaworski M, Lebiedowski M, Lorenc RS, Trempe J (1995) Ultrasound bone measurement in pediatric subjects. Calcif Tissue Int 56:368–371

    Article  CAS  PubMed  Google Scholar 

  29. Sundberg M, Gardsell P, Johnell O, Ornstein E, Sernbo I (1998) Comparison of quantitative ultrasound measurements in calcaneus with DXA and SXA at other skeletal sites: a population-based study on 280 children aged 11–16 years. Osteoporos Int 8:410–417

    Article  CAS  PubMed  Google Scholar 

  30. Cvijetic S, Baric IC, Bolanca S, Juresa V, Ozegovic DD (2003) Ultrasound bone measurement in children and adolescents. Correlation with nutrition, puberty, anthropometry, and physical activity. J Clin Epidemiol 56:591–597

    Article  PubMed  Google Scholar 

  31. Njeh CF, Hans D, Li J, Fan B, Fuerst T, He YQ, Tsuda-Futami E, Lu Y, Wu CY, Genant HK (2000) Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discrimination. Osteoporos Int 11:1051–1062

    Article  CAS  PubMed  Google Scholar 

  32. Gluer CC (2007) Quantitative ultrasound—it is time to focus research efforts. Bone 40:9–13

    Article  PubMed  Google Scholar 

  33. Krieg MA, Barkmann R, Gonnelli S, Stewart A, Bauer DC, Del Rio Barquero L, Kaufman JJ, Lorenc R, Miller PD, Olszynski WP, Poiana C, Schott AM, Lewiecki EM, Hans D (2008) Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 11:163–187

    Article  PubMed  Google Scholar 

  34. Baroncelli GI, Federico G, Vignolo M, Valerio G, del Puente A, Maghnie M, Baserga M, Farello G, Saggese G (2006) Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development. Bone 39:159–173

    Article  PubMed  Google Scholar 

  35. Gordon CM, Bachrach LK, Carpenter TO, Crabtree N, El-Hajj Fuleihan G, Kutilek S, Lorenc RS, Tosi LL, Ward KA, Ward LM, Kalkwarf HJ (2008) Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom 11:43–58

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Per Gärdsell and Christian Lindén for help in collecting the data. Financial support for this study was received from The Swedish Research Council, The Center for Athletic Research, The Region Skane Foundation, The Kock Foundation, and The Malmö University Hospital Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus K. Karlsson.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alwis, G., Rosengren, B., Nilsson, J.Å. et al. Normative Calcaneal Quantitative Ultrasound Data as an Estimation of Skeletal Development in Swedish Children and Adolescents. Calcif Tissue Int 87, 493–506 (2010). https://doi.org/10.1007/s00223-010-9425-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9425-5

Keywords

Navigation