Skip to main content
Log in

Tautological classes of matroids

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We introduce certain torus-equivariant classes on permutohedral varieties which we call “tautological classes of matroids” as a new geometric framework for studying matroids. Using this framework, we unify and extend many recent developments in matroid theory arising from its interaction with algebraic geometry. We achieve this by establishing a Chow-theoretic description and a log-concavity property for a 4-variable transformation of the Tutte polynomial, and by establishing an exceptional Hirzebruch-Riemann-Roch-type formula for permutohedral varieties that translates between \(K\)-theory and Chow theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A strengthening of the log-concavity of the \(f\)-vector of the independence complex to ultra-log-concavity, conjectured by Mason [88], was established in [7] and [17]. A strengthening of the log-concavity of the \(h\)-vector is given in [15]. Neither strengthening is implied by Theorem B.

  2. Our definition here may look different from the one in [35]. First, the wonderful compactification as defined here is the “maximal building set” wonderful compactification, whereas [35] more generally studies wonderful compactifications from arbitrary maximal building sets. Second, the wonderful compactification is originally constructed via blow-ups. From the fact that \(X_{E}\) can be constructed as a series of blow-ups from \(\mathbb{P}^{n}\), one can deduce the equivalence between the description of \(W_{L}\) as a blow-up and the description here as a closure in \(X_{E}\). See for example [71, Sect. 6] for an exposition of this equivalence.

  3. This identification does not respect the natural \(T\)-equivariant structure, which is to act trivially on the left hand side.

  4. [13, Theorem 5.28] does not state no internal zeros, but its proof implies that the sequence \((a_{0}, \ldots , a_{d-k-2})\) is a limit of log-concave positive sequences. A limit of such sequences is a log-concave sequence with no internal zeros; see [67, Lemma 34] for a proof.

  5. One subtlety is that Lemma 5.9 does not generalize easily to flag matroids, but this is remedied by [47, Corollary 3.16]. Alternatively, one can prove both this lemma and the original one (Lemma 10.10) by using the Atiyah-Bott localization formula (Theorem 10.2.(a)) combined with a generalized form [73, Theorem 2.3] of Brion’s formula [20].

References

  1. Adiprasito, K., Huh, J., Katz, E.: Hodge theory for combinatorial geometries. Ann. Math. (2) 188(2), 381–452 (2018). MR 3862944

    MathSciNet  MATH  Google Scholar 

  2. Aguiar, M., Ardila, F.: Hopf monoids and generalized permutahedra. Mem. Am. Math. Soc. (in press)

  3. Allermann, L., Rau, J.: First steps in tropical intersection theory. Math. Z. 264(3), 633–670 (2010) (English)

    MathSciNet  MATH  Google Scholar 

  4. Aluffi, P.: Differential forms with logarithmic poles and Chern-Schwartz-MacPherson classes of singular varieties. C. R. Acad. Sci. Paris, Sér. I Math. 329(7), 619–624 (1999). MR 1717120

    MathSciNet  MATH  Google Scholar 

  5. Aluffi, P.: Characteristic classes of singular varieties. In: Topics in Cohomological Studies of Algebraic Varieties. Trends Math., pp. 1–32. Birkhäuser, Basel (2005). MR 2143071

    MATH  Google Scholar 

  6. Aluffi, P.: Limits of Chow groups, and a new construction of Chern-Schwartz-MacPherson classes. Pure Appl. Math. Q. 2(4), 915–941 (2006) (English)

    MathSciNet  MATH  Google Scholar 

  7. Anari, N., Liu, K., Gharan, S.O., Vinzant, C.: Log-Concave Polynomials iii: Mason’s Ultra-Log-Concavity Conjecture for Independent Sets of Matroids (2018)

    Google Scholar 

  8. Ardila, F.: The geometry of matroids. Not. Am. Math. Soc. 65(8), 902–908 (2018). MR 3823027

    MathSciNet  MATH  Google Scholar 

  9. Ardila, F., Klivans, C.J.: The Bergman complex of a matroid and phylogenetic trees. J. Comb. Theory, Ser. B 96(1), 38–49 (2006). MR 2185977

    MathSciNet  MATH  Google Scholar 

  10. Ardila, F., Sanchez, M.: Valuations and the Hopf Monoid of Generalized Permutahedra (2020)

    MATH  Google Scholar 

  11. Ardila, F., Fink, A., Rincón, F.: Valuations for matroid polytope subdivisions. Can. J. Math. 62(6), 1228–1245 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Ardila, F., Castillo, F., Eur, C., Postnikov, A.: Coxeter submodular functions and deformations of Coxeter permutahedra. Adv. Math. 365, 107039 (2020). MR 4064768

    MathSciNet  MATH  Google Scholar 

  13. Ardila, F., Denham, G., Huh, J.: Lagrangian geometry of matroids. J. Am. Math. Soc. (in press). https://doi.org/10.1090/jams/1009

  14. Backman, S., Eur, C., Simpson, C.: Simplicial generation of Chow rings of matroids. J. Eur. Math. Soc. (in press)

  15. Berget, A., Spink, H., Tseng, D.: Log-concavity of matroid h-vectors and mixed Eulerian numbers (2020). arXiv:2005.01937

  16. Borovik, A.V., Gelfand, I.M., White, N.: Coxeter Matroids. Progress in Mathematics, vol. 216. Birkhäuser Boston, Boston (2003). MR 1989953

    MATH  Google Scholar 

  17. Brändén, P., Huh, J.: Lorentzian polynomials. Ann. Math. (2) 192(3), 821–891 (2020). MR 4172622

    MathSciNet  MATH  Google Scholar 

  18. Brändén, P., Leake, J., Pak, I.: Lower bounds for contingency tables via Lorentzian polynomials (2020). https://arxiv.org/abs/2008.05907

  19. Brandt, M., Eur, C., Zhang, L.: Tropical flag varieties. Adv. Math. (2021, in press). https://doi.org/10.1016/j.aim.2021.107695

  20. Brion, M.: Points entiers dans les polyèdres convexes. Ann. Sci. Éc. Norm. Supér. (4) 21(4), 653–663 (1988). MR 982338

    MATH  Google Scholar 

  21. Brion, M.: Equivariant Chow groups for torus actions. Transform. Groups 2(3), 225–267 (1997). MR 1466694

    MathSciNet  MATH  Google Scholar 

  22. Brylawski, T.: The broken-circuit complex. Trans. Am. Math. Soc. 234(2), 417–433 (1977). MR 468931

    MathSciNet  MATH  Google Scholar 

  23. Brylawski, T.: The Tutte polynomial. I. General theory. In: Matroid Theory and Its Applications, Liguori, Naples, pp. 125–275 (1982). MR 863010

    Google Scholar 

  24. Brylawski, T., Oxley, J.: The Tutte polynomial and its applications. In: Matroid Applications. Encyclopedia Math. Appl., vol. 40, pp. 123–225. Cambridge University Press, Cambridge (1992). MR 1165543

    MATH  Google Scholar 

  25. Cameron, A., Fink, A.: The Tutte polynomial via lattice point counting. J. Comb. Theory, Ser. A 188, 105584 (2022). MR 4369644

    MathSciNet  MATH  Google Scholar 

  26. Cameron, A., Dinu, R., Michalek, M., Seynnaeve, T.: Flag Matroids: Algebra and Geometry (2018). https://arxiv.org/abs/1811.00272

    MATH  Google Scholar 

  27. Castillo, F., Liu, F.: On the Todd class of the permutohedral variety. Algebraic Combin. (2020, in press). https://doi.org/10.5802/alco.157. arXiv:2005.01937

  28. Catanese, F., Hoşten, S., Khetan, A., Sturmfels, B.: The maximum likelihood degree. Am. J. Math. 128(3), 671–697 (2006). MR 2230921

    MathSciNet  MATH  Google Scholar 

  29. Chen, J.: Matroids: a Macaulay2 package. J. Softw. Algebra Geom. 9, 19–27 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Cohen, D., Denham, G., Falk, M., Varchenko, A.: Critical points and resonance of hyperplane arrangements. Can. J. Math. 63(5), 1038–1057 (2011). MR 2866070

    MathSciNet  MATH  Google Scholar 

  31. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. Am. Math. Soc., Providence (2011). MR 2810322

    MATH  Google Scholar 

  32. Crapo, H.H.: A higher invariant for matroids. J. Comb. Theory 2, 406–417 (1967). MR 215744

    MathSciNet  MATH  Google Scholar 

  33. Crapo, H.H.: The Tutte polynomial. Aequ. Math. 3, 211–229 (1969). MR 262095

    MathSciNet  MATH  Google Scholar 

  34. Dawson, J.E.: A collection of sets related to the Tutte polynomial of a matroid. In: Graph Theory, Singapore, 1983. Lecture Notes in Math., vol. 1073, pp. 193–204. Springer, Berlin (1984). MR 761018

    Google Scholar 

  35. De Concini, C., Procesi, C.: Wonderful models of subspace arrangements. Sel. Math. New Ser. 1(3), 459–494 (1995). MR 1366622

    MathSciNet  MATH  Google Scholar 

  36. Demailly, J.-P., Peternell, T., Schneider, M.: Compact complex manifolds with numerically effective tangent bundles. J. Algebraic Geom. 3(2), 295–345 (1994). MR 1257325

    MathSciNet  MATH  Google Scholar 

  37. Denham, G., Garrousian, M., Schulze, M.: A geometric deletion-restriction formula. Adv. Math. 230(4–6), 1979–1994 (2012). MR 2927361

    MathSciNet  MATH  Google Scholar 

  38. Derksen, H., Fink, A.: Valuative invariants for polymatroids. Adv. Math. 225(4), 1840–1892 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Dinu, R., Eur, C., Seynnaeve, T.: K-theoretic Tutte polynomials of morphisms of matroids. J. Comb. Theory, Ser. A 181, 105414 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Dupont, C., Fink, A., Moci, L.: Universal Tutte characters via combinatorial coalgebras. Algebraic Combin. 1(5), 603–651 (2018) (en). MR 3887405

    MathSciNet  MATH  Google Scholar 

  41. Edidin, D., Graham, W.: Equivariant intersection theory. Invent. Math. 131(3), 595–634 (1998). MR 1614555

    MathSciNet  MATH  Google Scholar 

  42. Edidin, D., Graham, W.: Localization in equivariant intersection theory and the Bott residue formula. Am. J. Math. 120(3), 619–636 (1998). MR 1623412

    MathSciNet  MATH  Google Scholar 

  43. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Combinatorial Structures and Their Applications, Proc. Calgary Internat. Conf., Calgary, Alta., 1969, pp. 69–87. Gordon and Breach, New York (1970). MR 0270945

    Google Scholar 

  44. Eisenbud, D., Harris, J.: 3264 and All That—a Second Course in Algebraic Geometry. Cambridge University Press, Cambridge (2016). MR 3617981

    MATH  Google Scholar 

  45. Eur, C.: The geometry of divisors on matroids. Ph.D. thesis, UC Berkeley (2020)

  46. Eur, C., Huh, J.: Logarithmic concavity for morphisms of matroids. Adv. Math. 367, 107094 (2020). MR 4078485

    MathSciNet  MATH  Google Scholar 

  47. Eur, C., Sanchez, M., Supina, M.: The universal valuation of Coxeter matroids. Bull. Lond. Math. Soc. 53(3), 798–819 (2021)

    MathSciNet  MATH  Google Scholar 

  48. Feichtner, E.M., Sturmfels, B.: Matroid polytopes, nested sets and Bergman fans. Port. Math. 62(4), 437–468 (2005) (English)

    MathSciNet  MATH  Google Scholar 

  49. Feichtner, E.M., Yuzvinsky, S.: Chow rings of toric varieties defined by atomic lattices. Invent. Math. 155(3), 515–536 (2004). MR 2038195

    MathSciNet  MATH  Google Scholar 

  50. Fink, A., Speyer, D.E.: \(K\)-classes for matroids and equivariant localization. Duke Math. J. 161(14), 2699–2723 (2012). MR 2993138

    MathSciNet  MATH  Google Scholar 

  51. François, G., Rau, J.: The diagonal of tropical matroid varieties and cycle intersections. Collect. Math. 64(2), 185–210 (2013) (English)

    MathSciNet  MATH  Google Scholar 

  52. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993). The William H. Roever Lectures in Geometry

    MATH  Google Scholar 

  53. Fulton, W.: Intersection Theory, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics), vol. 2. Springer, Berlin (1998). MR 1644323

    MATH  Google Scholar 

  54. Fulton, W., Lazarsfeld, R.: Positive polynomials for ample vector bundles. Ann. Math. 118(1), 35–60 (1983)

    MathSciNet  MATH  Google Scholar 

  55. Fulton, W., Sturmfels, B.: Intersection theory on toric varieties. Topology 36(2), 335–353 (1997) (English)

    MathSciNet  MATH  Google Scholar 

  56. Gelfand, I.M., Serganova, V.V.: Combinatorial geometries and the strata of a torus on homogeneous compact manifolds. Usp. Mat. Nauk 42(2(254)), 107–134 (1987). 287. MR 898623

    MathSciNet  MATH  Google Scholar 

  57. Gelfand, I.M., Serganova, V.V.: On the general definition of a matroid and a greedoid. Dokl. Akad. Nauk SSSR 292(1), 15–20 (1987). MR 871945

    MathSciNet  Google Scholar 

  58. Gelfand, I.M., Goresky, R.M., MacPherson, R.D., Serganova, V.V.: Combinatorial geometries, convex polyhedra, and Schubert cells. Adv. Math. 63(3), 301–316 (1987)

    MathSciNet  MATH  Google Scholar 

  59. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/

  60. Groemer, H.: On the extension of additive functionals on classes of convex sets. Pac. J. Math. 75(2), 397–410 (1978). MR 513905

    MathSciNet  MATH  Google Scholar 

  61. Gubler, W.: A guide to tropicalizations. In: Algebraic and Combinatorial Aspects of Tropical Geometry. Proceedings Based on the CIEM Workshop on Tropical Geometry, International Centre for Mathematical Meetings (CIEM), Castro Urdiales, Spain, December 12–16, 2011, pp. 125–189. American Mathematical Society (AMS), Providence (2013) (English)

    Google Scholar 

  62. Hacking, P., Keel, S., Tevelev, J.: Compactification of the moduli space of hyperplane arrangements. J. Algebraic Geom. 15(4), 657–680 (2006). MR 2237265

    MathSciNet  MATH  Google Scholar 

  63. Hampe, S.: The intersection ring of matroids. J. Comb. Theory, Ser. B 122, 578–614 (2017)

    MathSciNet  MATH  Google Scholar 

  64. Heron, A.P.: Matroid polynomials. In: Combinatorics, Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972, pp. 164–202 (1972). MR 0340058

    Google Scholar 

  65. Hovanskiĭ, A.G.: Newton polyhedra, and the genus of complete intersections. Funkc. Anal. Prilozh. 12(1), 51–61 (1978). MR 487230

    MathSciNet  Google Scholar 

  66. Hu, Y., Liu, C.-H., Yau, S.-T.: Toric morphisms and fibrations of toric Calabi-Yau hypersurfaces. Adv. Theor. Math. Phys. 6(3), 457–506 (2002) (English)

    MathSciNet  MATH  Google Scholar 

  67. Huh, J.: Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs. J. Am. Math. Soc. 25(3), 907–927 (2012) (English)

    MathSciNet  MATH  Google Scholar 

  68. Huh, J.: The maximum likelihood degree of a very affine variety. Compos. Math. 149(8), 1245–1266 (2013)

    MathSciNet  MATH  Google Scholar 

  69. Huh, J.: Rota’s conjecture and positivity of algebraic cycles in permutohedral varieties. Ph.D. thesis (2014)

  70. Huh, J.: \(h\)-Vectors of matroids and logarithmic concavity. Adv. Math. 270, 49–59 (2015) (English)

    MathSciNet  MATH  Google Scholar 

  71. Huh, J.: Tropical geometry of matroids. In: Current Developments in Mathematics 2016. Papers Based on Selected Lectures Given at the Current Development Mathematics Conference, Harvard University, Cambridge, MA, USA, November 2016 pp. 1–46. International Press, Somerville (2016) (English)

    Google Scholar 

  72. Huh, J., Katz, E.: Log-concavity of characteristic polynomials and the Bergman fan of matroids. Math. Ann. 354(3), 1103–1116 (2012). MR 2983081

    MathSciNet  MATH  Google Scholar 

  73. Ishida, M.-N.: Polyhedral Laurent series and Brion’s equalities. Int. J. Math. 1(3), 251–265 (1990). MR 1078514

    MathSciNet  MATH  Google Scholar 

  74. Joni, S.A., Rota, G.-C.: Coalgebras and bialgebras in combinatorics. Stud. Appl. Math. 61(2), 93–139 (1979). MR 544721

    MathSciNet  MATH  Google Scholar 

  75. Katz, E.: A tropical toolkit. Expo. Math. 27(1), 1–36 (2009) (English)

    MathSciNet  MATH  Google Scholar 

  76. Katz, E.: Tropical intersection theory from toric varieties. Collect. Math. 63(1), 29–44 (2012) (English)

    MathSciNet  MATH  Google Scholar 

  77. Katz, E.: Matroid theory for algebraic geometers. In: Nonarchimedean and Tropical Geometry, Simons Symp., pp. 435–517. Springer, Cham (2016). MR 3702317

    Google Scholar 

  78. Katz, E., Payne, S.: Realization spaces for tropical fans. In: Combinatorial Aspects of Commutative Algebra and Algebraic Geometry. The Abel Symposium 2009. Proceedings of the 6th Abel Symposium, Voss, Norway, June 1–4, 2009, pp. 73–88. Springer, Berlin (2011) (English)

    Google Scholar 

  79. Krajewski, T., Moffatt, I., Tanasa, A.: Hopf algebras and Tutte polynomials. Adv. Appl. Math. 95, 271–330 (2018)

    MathSciNet  MATH  Google Scholar 

  80. Las Vergnas, M.: Extensions normales d’un matroïde, polynôme de Tutte d’un morphisme. C. R. Acad. Sci. Paris, Sér. A-B 280, A1479–A1482 (1975)

    MathSciNet  MATH  Google Scholar 

  81. Las Vergnas, M.: On the Tutte polynomial of a morphism of matroids. Ann. Discrete Math. 8, 7–20 (1980). Combinatorics 79, Proc. Colloq., Univ. Montréal, Montreal, Que., 1979, Part I

    MathSciNet  MATH  Google Scholar 

  82. Lascu, A.T., Mumford, D., Scott, D.B.: The self-intersection formula and the ‘formule-clef’. Math. Proc. Camb. Philos. Soc. 78, 117–123 (1975) (English)

    MathSciNet  MATH  Google Scholar 

  83. Lazarsfeld, R.: Positivity in Algebraic Geometry. I. Classical Setting: Line Bundles and Linear Series, vol. 48. Springer, Berlin (2004) (English)

    MATH  Google Scholar 

  84. López de Medrano, L., Rincón, F., Shaw, K.: Chern-Schwartz-MacPherson cycles of matroids. Proc. Lond. Math. Soc. (3) 120(1), 1–27 (2020). MR 3999674

    MathSciNet  MATH  Google Scholar 

  85. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. 2nd edn. Oxford Classic Texts in the Physical Sciences. The Clarendon Press, Oxford University Press, New York (2015). With contribution by A.V. Zelevinsky and a foreword by Richard Stanley. Reprint of the 2008 paperback edition. MR 3443860

    MATH  Google Scholar 

  86. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. Graduate Studies in Mathematics, vol. 161. Am. Math. Soc., Providence (2015)

    MATH  Google Scholar 

  87. MacPherson, R.D.: Chern classes for singular algebraic varieties. Ann. Math. (2) 100, 423–432 (1974). MR 361141

    MathSciNet  MATH  Google Scholar 

  88. Mason, J.H.: Matroids: unimodal conjectures and Motzkin’s theorem. In: Combinatorics, Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972, pp. 207–220 (1972). MR 0349445

    Google Scholar 

  89. Murota, K.: Discrete Convex Analysis. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2003). MR 1997998

    MATH  Google Scholar 

  90. Nguyen, H.Q.: Semimodular functions and combinatorial geometries. Trans. Am. Math. Soc. 238, 355–383 (1978). MR 491269

    MathSciNet  MATH  Google Scholar 

  91. Nielsen, A.: Diagonalizably linearized coherent sheaves. Bull. Soc. Math. Fr. 102, 85–97 (1974). MR 0366928

    MathSciNet  MATH  Google Scholar 

  92. Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. Invent. Math. 56(2), 167–189 (1980). MR 558866

    MathSciNet  MATH  Google Scholar 

  93. Orlik, P., Terao, H.: The number of critical points of a product of powers of linear functions. Invent. Math. 120(1), 1–14 (1995). MR 1323980

    MathSciNet  MATH  Google Scholar 

  94. Oxley, J.: Matroid Theory, 2nd edn. Oxford Graduate Texts in Mathematics, vol. 21. Oxford University Press, Oxford (2011)

    MATH  Google Scholar 

  95. Postnikov, A.: Permutohedra, associahedra, and beyond. Int. Math. Res. Not. 2009(6), 1026–1106 (2009) (English)

    MathSciNet  MATH  Google Scholar 

  96. Rau, J.: The Tropical Poincaré-Hopf Theorem (2020). https://arxiv.org/abs/2007.11642

    MATH  Google Scholar 

  97. Rosu, I.: Equivariant \(K\)-theory and equivariant cohomology. Math. Z. 243(3), 423–448 (2003). With an appendix by Allen Knutson and Rosu. MR 1970011

    MathSciNet  MATH  Google Scholar 

  98. Rota, G.-C.: Combinatorial theory, old and new. In: Actes du Congrès International des Mathématiciens, Nice, 1970, Tome 3, pp. 229–233 (1971). MR 0505646

    Google Scholar 

  99. Schmitt, W.R.: Antipodes and incidence coalgebras. J. Comb. Theory, Ser. A 46(2), 264–290 (1987). MR 914660

    MathSciNet  MATH  Google Scholar 

  100. Schwartz, M.-H.: Classes caractéristiques définies par une stratification d’une variété analytique complexe. C. R. Acad. Sci. Paris 260, 3262–3264 (1965). 3535–3537. MR 184254

    MathSciNet  MATH  Google Scholar 

  101. Silvotti, R.: On a conjecture of Varchenko. Invent. Math. 126(2), 235–248 (1996) (English)

    MathSciNet  MATH  Google Scholar 

  102. Speyer, D.E.: Tropical linear spaces. SIAM J. Discrete Math. 22(4), 1527–1558 (2008). MR 2448909

    MathSciNet  MATH  Google Scholar 

  103. Speyer, D.E.: A matroid invariant via the \(K\)-theory of the Grassmannian. Adv. Math. 221(3), 882–913 (2009). MR 2511042

    MathSciNet  MATH  Google Scholar 

  104. Sturmfels, B.: Solving Systems of Polynomial Equations. CBMS Regional Conference Series in Mathematics, vol. 97. Am. Math. Soc., Providence (2002). Published for the Conference Board of the Mathematical Sciences, Washington, DC. MR 1925796

    MATH  Google Scholar 

  105. Teissier, B.: Du théorème de l’index de Hodge aux inégalités isopérimétriques. C. R. Acad. Sci. Paris, Sér. A-B 288(4), A287–A289 (1979). MR 524795

    MATH  Google Scholar 

  106. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Can. J. Math. 6, 80–91 (1954). MR 61366

    MathSciNet  MATH  Google Scholar 

  107. Varchenko, A.: Critical points of the product of powers of linear functions and families of bases of singular vectors. Compos. Math. 97(3), 385–401 (1995). MR 1353281

    MathSciNet  MATH  Google Scholar 

  108. Vezzosi, G., Vistoli, A.: Higher algebraic \(K\)-theory for actions of diagonalizable groups. Invent. Math. 153(1), 1–44 (2003). MR 1990666

    MathSciNet  MATH  Google Scholar 

  109. Welsh, D.J.A.: Matroid Theory. L. M. S. Monographs, vol. 8. Academic Press [Harcourt Brace Jovanovich, Publishers], London (1976). MR 0427112

    MATH  Google Scholar 

  110. White, N.L.: The basis monomial ring of a matroid. Adv. Math. 24(3), 292–297 (1977). MR 437366

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Alex Fink for helpful discussions on the convolution formula for Tutte polynomials, and we would like to thank Eric Katz for helpful discussions and for sharing unpublished notes of a deletion-contraction proof of [72, Proposition 5.2]. We would also like to thank the creators of Macaulay2 [59] for their helpful and free software, and Justin Chen for the Macaulay2 package on matroids [29], which was used extensively in the early stages of this project. We thank Graham Denham, Ahmed Ashref, and Avi Steiner for suggesting minor edits to an earlier draft of the paper. We thank the referee for a careful reading and helpful suggestions. The second and fourth authors were partially supported by the US National Science Foundation (DMS-2001854 and DMS-2001712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Berget.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I: Alternate proof of Theorem A via convolution formulas

We give another proof for Theorem A, different from the proof in §4, by using the base polytope properties of the tautological classes established in §5. Instead of establishing a deletion-contraction relation, we establish a recursive convolution formula for \(\alpha ^{i}\beta ^{j}c_{k}(\mathcal{S}_{M}^{\vee})c_{\ell}( \mathcal{Q}_{M})\), and show that it agrees with a new Tutte polynomial convolution formula whose proof was communicated to us by Alex Fink. As before, let \(E = \{0,1,\ldots , n\}\), and \(X_{E}\) the \(n\)-dimensional permutohedral variety. Important for us will be the following well-known formula, called the corank-nullity formula, for the Tutte polynomial of a matroid \(M\) of rank \(r\)

$$ T_{M}(x,y) = \sum _{S \subseteq E} (x-1)^{r-\operatorname{rk}_{M}(S)}(y-1)^{|S| - \operatorname{rk}_{M}(S)}. $$

Theorem A 2

For a matroid \(M\) of rank \(r\) with ground set \(E\), denote

$$ t_{M}(x,y,z,w)=(x+y)^{-1}(y+z)^{r}(x+w)^{|E|-r}T_{M}(\frac{x+y}{y+z}, \frac{x+y}{x+w}), $$

where \(T_{M}\) is the Tutte polynomial of \(M\). Then, we have

$$ \sum _{i+j+k+\ell =n} \Big( \int _{X_{E}} \alpha ^{i}\beta ^{j}c_{k}( \mathcal{S}_{M}^{\vee})c_{\ell}(\mathcal{Q}_{M}) \Big) x^{i}y^{j}z^{k}w^{ \ell}=t_{M}(x,y,z,w). $$

For a matroid \(M\), note that \(t_{M}(x,y,z,w)\) is a polynomial since the Tutte polynomial \(T_{M}\) always has no constant term. Let us denote

$$ \widetilde{t}_{M}(x,y,z,w) = \sum _{i+j+k+\ell = n}\Big( \int _{X_{E}} \alpha ^{i}\beta ^{j}c_{k}(\mathcal{S}_{M}^{\vee})c_{\ell}( \mathcal{Q}_{M}) \Big) x^{i}y^{j}z^{k}w^{\ell}. $$

We prove \(\widetilde{t}_{M}(x,y,z,w) = t_{M}(x,y,z,w)\) in two steps. First, by using the matroid minor decomposition properties, we show that \(\widetilde{t}_{M}(x,y,z,w)\) and \(t_{M}(x,y,z,w)\) satisfy an identical recursive relation, which reduces the proof of Theorem A to the case where \(x=y=0\). This case is precisely the content of Theorem 6.2, which we will give an alternate proof for using a computation in [103, Theorem 5.1], together with the valuativity and duality properties of tautological Chern classes of matroids.

We start with a recursive relation for \(\widetilde{t}_{M}(x,y,z,w)\).

Lemma I.1

Let \(M\) be a matroid with ground set \(E\), and fix any element \(e\in E\). Then, one has

$$\begin{aligned} &\widetilde{t}_{M}(x,y,z,w) = \widetilde{t}_{M}(0,y,z,w) + x \sum _{e \in S\subsetneq E} \widetilde{t}_{M|S}(0,y,z,w) \ \widetilde{t}_{M/S}(x,0,z,w), \quad \textit{and} \\ &\widetilde{t}_{M}(x,y,z,w) = \widetilde{t}_{M}(x,0,z,w) + y \sum _{ \substack{S \not\ni e\\ \emptyset \subsetneq S \subsetneq E}} \widetilde{t}_{M|S}(0,y,z,w) \ \widetilde{t}_{M/S}(x,0,z,w). \end{aligned}$$

Proof

Let us show the first statement (the second statement is proved similarly). Recall from Remark 2.4 that \(\alpha = \sum _{e\in S\subsetneq E} [Z_{S}]\), where \(Z_{S}\) is the torus-invariant divisor of \(X_{E}\) corresponding to the ray \(\operatorname{Cone}(\overline{\mathbf {e}}_{S})\) of the fan \(\Sigma _{E}\), and recall the notation that \(c(\mathcal {E},u) = \sum _{i\geq 0} c_{i}(\mathcal {E})u^{i}\) denotes the Chern polynomial of a \(K\)-class \([\mathcal {E}]\) with formal variable \(u\). For any integers \(i\geq 1\) and \(j\geq 0\), we first compute that

$$ \begin{aligned} \int _{X_{E}} \alpha ^{i} \beta ^{j} c(\mathcal {S}_{M}^{ \vee},z) c(\mathcal {Q}_{M},w) &= \int _{X_{E}} \sum _{e\in S \subsetneq E} [Z_{S}] \alpha ^{i-1} \beta ^{j} c(\mathcal {S}_{M}^{\vee},z) c(\mathcal {Q}_{M},w) \\ &= \sum _{e\in S\subsetneq E} \int _{Z_{S}} \big(\alpha ^{i-1} \beta ^{j} c(\mathcal {S}_{M}^{\vee},z) c(\mathcal {Q}_{M},w) \big) |_{Z_{S}}. \end{aligned} $$

Moreover, since \(Z_{S} \simeq X_{S} \times X_{E\setminus S}\) and \(A^{\bullet}(Z_{S}) \simeq A^{\bullet}(X_{S}) \otimes A^{\bullet}(X_{E \setminus S})\) by Proposition 5.2, applying the matroid minors decomposition formula (Proposition 5.3 and Corollary 5.4) yields that

$$\begin{aligned} &\sum _{e\in S\subsetneq E} \int _{Z_{S}} \big(\alpha ^{i-1} \beta ^{j} c(\mathcal {S}_{M}^{\vee},z) c(\mathcal {Q}_{M},w) \big) |_{Z_{S}} \\ &=\sum _{e\in S\subsetneq E} \int _{X_{S}\times X_{E\setminus S}} \Big( \big(1\otimes \alpha _{E\setminus S}^{i-1}\big) \big(\beta _{S}^{j} \otimes 1\big) \big(c(\mathcal {S}_{M|S}^{\vee},z) \otimes c(\mathcal {S}_{M/S}^{ \vee},z)\big) \\ &\quad{}\times \big(c(\mathcal {Q}_{M|S},w) \otimes c(\mathcal {Q}_{M/S},w) \big)\Big) \\ &= \sum _{e\in S\subsetneq E} \int _{X_{S}}\big( \beta _{S}^{j} c( \mathcal {S}_{M|S}^{\vee},z) c(\mathcal {Q}_{M|S},w)\big)\cdot \int _{X_{E \setminus S}}\big( \alpha _{E\setminus S}^{i-1} c(\mathcal {S}_{M/S}^{ \vee},z) c(\mathcal {Q}_{M/S},w)\big). \end{aligned}$$

Thus, by rewriting \(\widetilde{t}_{M}(x,y,z,w)\) as

$$\begin{aligned} &\widetilde{t}_{M}(x,y,z,w) \\&= \int _{X_{E}} \Big( (1+\alpha x + \cdots + \alpha ^{n}x^{n}) \cdot (1+\beta y + \cdots + \beta ^{n}y^{n}) \cdot c( \mathcal {S}_{M}^{\vee},z) \cdot c(\mathcal {Q}_{M},w) \Big), \end{aligned}$$

we conclude that

$$ \widetilde{t}_{M}(x,y,z,w) = \widetilde{t}_{M}(0,y,z,w) + x \sum _{e \in S\subsetneq E} \widetilde{t}_{M|S}(0,y,z,w) \ \widetilde{t}_{M/S}(x,0,z,w), $$

as desired. □

We now show that the polynomial \(t_{M}(x,y,z,w)\) obeys the same recursive relation.

Lemma I.2

Let \(M\) be a matroid with ground set \(E\), and fix an element \(e\in E\). Then one has

$$\begin{aligned} t_{M}(x,y,z,w)&= t_{M}(0,y,z,w)+x\sum _{e \in S\subsetneq E} t_{M|S}(0,y,z,w)t_{M/S}(x,0,z,w), \quad \textit{and} \\ t_{M}(x,y,z,w)&=t_{M}(x,0,z,w)+y\sum _{ \substack{e\notin S\\\emptyset \subsetneq S \subsetneq E}} t_{M|S}(0,y,z,w)t_{M/S}(x,0,z,w). \end{aligned}$$

From here to the end of this subsection, we include \(\emptyset \) and \(E\) in summations unless otherwise stated, and allow a matroid \(M\) to have an empty ground set, in which case we write \(M = \emptyset \) for the unique matroid on the ground set \(\emptyset \) whose set of bases is \(\{\emptyset \}\). By convention, we set \(T_{\emptyset}(x,y) = 1\).

To prove the lemma, we first borrow some notation from [40]. For two functions \(f\) and \(g\) from the set of matroids with ground sets contained in \(E\) to a common ring, we define \(f \ast g\) by

$$ (f\ast g)(M)=\sum _{\emptyset \subseteq A\subseteq E} f(M|A)g(M/A). $$

Then, one can verify that ∗ is associative by computing that

$$ (f_{0}\ast \ldots \ast f_{k})(M)=\sum _{\emptyset \subseteq A_{1} \subseteq \cdots \subseteq A_{k} \subseteq E}f_{1}(M|A_{1})f_{2}(M|A_{2}/A_{1}) \ldots f_{k}(M/A_{k}). $$

The function \(\nu \) such that \(\nu (\emptyset )=1\) and \(\nu (M)=0\) for \(M\ne \emptyset \) acts as the identity for ∗, as one easily checks

$$ \nu \ast f=f\ast \nu =f \quad \text{for any $f$.} $$

We define \(N_{(a,b)}(M)=a^{{\operatorname{rk}}_{M}}b^{{\operatorname{crk}}_{M}}\), where \({\operatorname{rk}}_{M}\) and \({\operatorname{crk}}_{M}\) denotes the rank and corank of \(M\), respectively. This function satisfies

$$ N_{(a,b)}(\emptyset )=1\text{ and } N_{(a,b)}(M)=N_{(a,b)}(M|{A})N_{(a,b)}(M/A) $$

for all \(\emptyset \subseteq A\subseteq E\). We note the following convolution formula. (The first part appears in [40, Sect. 5 Equation (3)] and the second part appears in [40, Proposition 3.6, proof of Theorem 5.10]).

Lemma I.3

We have

$$ (N_{(a,b)}\ast N_{(c,d)})(M)=a^{{\operatorname{rk}}_{M}}d^{{ \operatorname{crk}}_{M}}T_{M}(1+\frac{c}{a},1+\frac{b}{d}), $$

and in particular, denoting \(\overline{N_{(a,b)}} = N_{(-a,-b)}\), we have

$$ N_{(a,b)}\ast \overline{N_{(a,b)}}= \overline{N_{(a,b)}}\ast N_{(a,b)} =\nu . $$

Proof

For the first part, both sides are simultaneously homogenous in \(a,c\) of degree \({\operatorname{rk}}_{M}\) and in \(b,d\) of degree \({\operatorname{crk}}_{M}\), so it suffices to show the equality when \(a=d=1\). We have \(N_{(1,b)}(M|A)=b^{|A|-{\operatorname{rk}}_{M}(A)}\) and \(N_{(c,1)}(M/A)=c^{{\operatorname{rk}}_{M}-{\operatorname{rk}}_{M}(A)}\), so by the corank-nullity formula for the Tutte polynomial and then the definition of the convolution ∗, we have

$$ T_{M}(1+c,1+b)=\sum _{\emptyset \subseteq A \subseteq E}c^{{ \operatorname{rk}}_{M}-{\operatorname{rk}}_{M}(A)}b^{|A|-{ \operatorname{rk}}_{M}(A)}=(N_{(1,b)}\ast N_{(c,1)})(M) $$

as desired. The second part follows since \(T_{M}(0,0)=0\) if \(M\ne \emptyset \) and \(T_{\emptyset}(0,0)=1\). □

Proof of Lemma I.2

Write

$$ g_{M}(x,y,z,w)=(x+y)t_{M}(x,y,z,w)=(y+z)^{r}(x+w)^{|E|-r}T_{M}( \frac{x+y}{y+z},\frac{x+y}{x+w}), $$

so that we have to show

$$\begin{aligned} \frac{y}{x+y}g_{M}(x,y,z,w)&=\sum _{e\in B}g_{M|B}(0,y,z,w)g_{M/B}(x,0,z,w), \quad \text{and} \end{aligned}$$
(4)
$$\begin{aligned} \frac{x}{x+y}g_{M}(x,y,z,w)&=\sum _{e\notin B}g_{M|B}(0,y,z,w)g_{M/B}(x,0,z,w). \end{aligned}$$
(5)

Here, we used our convention for this subsection that summations include the \(\emptyset \) and \(E\) cases unless stated otherwise. Now, define the functions

$$ N_{0} = N_{(-y-z, -y+w)}, \qquad N_{1} = N_{(-z, w)}, \qquad N_{2} = N_{(x-z, x+w)}. $$

Then we can directly check from the \(N_{(a,b)}\ast N_{(c,d)}\) formula that

$$ g_{M}(x,y,z,w)=(\overline{N_{0}}\ast N_{2})(M),\quad g_{M}(0,y,z,w)=( \overline{N_{0}}\ast N_{1})(M), $$
$$ g_{M}(x,0,z,w)=( \overline{N_{1}}\ast N_{2})(M). $$

Therefore,

$$\begin{aligned} g_{M}(x,y,z,w)&=(\overline{N_{0}}\ast N_{2})(M)=((\overline{N_{0}} \ast N_{1}) \ast (\overline{N_{1}} \ast N_{2}))(M) \\ & =\sum _{B} g_{M|B}(0,y,z,w)g_{M/B}(x,0,z,w), \end{aligned}$$

which is the sum of (4) and (5). Hence to conclude, we only need to verify (4). To simplify notation, for subsets \(X\subseteq Y \subseteq E\) we will write \(X/Y\) for \(M|X/Y\), which also equals \((M/Y)|X\). We compute

$$\begin{aligned} &\sum _{e\in B}g_{B}(0,y,z,w)g_{M/B}(x,0,z,w) \\ &=\sum _{e\in B}\sum _{A\subseteq B \subseteq C} \overline{N_{0}}(A) N_{1}(B/A) \overline{N_{1}}(C/B) N_{2}(M/C) \\ &=\sum _{A\subseteq A\cup e \subseteq B \subseteq C }\overline{N_{0}}(A)N_{1}((A \cup e)/A)N_{1}(B/(A\cup e))\overline{N_{1}}(C/B)N_{2}(M/C) \\ &=\sum _{A\subseteq A\cup e \subseteq C} \overline{N_{0}}(A)N_{1}((A \cup e)/A)(N_{1}\ast \overline{N_{1}})(C/(A\cup e))N_{2}(M/C) \\ &=\sum _{A}\overline{N_{0}}(A)N_{1}((A\cup e)/A)N_{2}(M/(A\cup e)). \end{aligned}$$

When \(i\in A\) we have \(N_{1}((A\cup i)/A)=1\), and when \(i\notin A\) then \((A\cup i)/A\) is a one element rank 1 matroid. For a 1 element matroid \(L\) we have \(N_{1}(L) = -\frac{x}{x+y}\overline{N_{0}}(L) + \frac{y}{x+y} N_{2}(L)\) since we can check

$$\begin{aligned} N_{1}(U_{0,1}) &=w=-\frac{x}{x+y}(y-w)+\frac{y}{x+y}(x+w)\\&= - \frac{x}{x+y} \overline{N_{0}}(U_{0,1}) + \frac{y}{x+y} N_{2}(U_{0,1}) \\ N_{1}(U_{1,1}) &=-z=-\frac{x}{x+y}(y+z)+\frac{y}{x+y}(x-z)\\&= - \frac{x}{x+y} \overline{N_{0}}(U_{1,1}) + \frac{y}{x+y} N_{2}(U_{1,1}). \end{aligned}$$

Therefore, we continue our computation as

$$\begin{aligned} &\sum _{A}\overline{N_{0}}(A)N_{1}((A\cup e)/A)N_{2}(M/(A\cup e)) \\ &=\sum _{e\in A}\overline{N_{0}}(A)N_{2}(M/A) -\frac{x}{x+y}\sum _{e \notin A}\overline{N_{0}}(A\cup e)N_{2}(M/(A\cup i)) \\ &\quad{} +\frac{y}{x+y} \sum _{e\notin A}\overline{N_{0}}(A)N_{2}(M/A) \\ &=\frac{y}{x+y}\sum _{e\in A}\overline{N_{0}}(A)N_{2}(M/A)+ \frac{y}{x+y}\sum _{e\notin A}\overline{N_{0}}(A)N_{2}(M/A) \\ &=\frac{y}{x+y}(\overline{N_{0}}\ast N_{2})(M)=\frac{y}{x+y}g_{M}(x,y,z,w). \end{aligned}$$

We have thus verified (4). □

Proof of Theorem A

When the ground set \(E\) has cardinality 1, the left-hand-side \(\widetilde{t}_{M}(x,y,z,w)\) equals 1, and the right-hand-side \(t_{M}(x,y,z,w)\) is also 1 because \(T_{U_{1,\{0\}}}(u,v) = u\) and \(T_{U_{0,\{0\}}}(u,v) = v\). Let us now induct on the cardinality of \(E\). Let \(M\) be a matroid on \(E\), and assume that the desired equality holds for all matroids on ground sets with cardinality less than \(|E|\).

Since \(\widetilde{t}_{M}(x,y,z,w)\) and \(t_{M}(x,y,z,w)\) satisfy the same recursive relation given in Lemma I.1 and Lemma I.2, the induction hypothesis implies that it suffices to show \(\widetilde{t}_{M}(0,y,z,w) = t_{M}(0,y,z,w)\) and \(\widetilde{t}_{M}(x,0,z,w) = t_{M}(x,0,z,w)\). Applying the recursive relation and the induction hypothesis again, we find that it suffices to show \(\widetilde{t}_{M}(0,0,z,w) = t_{M}(0,0,z,w)\). Noting that Tutte polynomials have no constant terms, we compute that \(t_{M}(0,0,z,w) = z^{r}w^{|E|-r}(\beta (M) \frac{1}{z}+{\beta}(M^{ \perp})\frac{1}{w})\). We have thus reduced the proof to showing Theorem 6.2, reproduced below, for which we give an alternate proof. □

Theorem 6.2 1

Let \(M\) be a matroid of rank \(r\) on ground set \(E\). Then,

$$ \int _{X_{E}} c_{r-1}(\mathcal {S}_{M}^{\vee})c_{|E|-r}(\mathcal {Q}_{M}) = \beta (M) \quad \textit{and}\quad \int _{X_{E}} c_{r}(\mathcal {S}_{M}^{ \vee})c_{|E|-r-1}(\mathcal {Q}_{M}) = \beta (M^{\perp}), $$

where we set by convention \(c_{-1}(\mathcal {E}) = 0\) for a \(K\)-class \([\mathcal {E}]\).

In §6, we had derived Theorem 6.2 as an immediate consequence of Theorem A. Here, we give another proof that does not rely on Theorem A, but uses a geometric computation in [103, Theorem 5.1] and valuativity.

Alternate proof of Theorem 6.2 via geometry and valuativity

Noting that Cremona involution is an isomorphism, one has from the matroid duality property (Proposition 5.11) that

$$\begin{aligned} \int _{X_{E}}c_{r}(\mathcal {S}_{M}^{\vee})c_{|E|-r-1}(\mathcal {Q}_{M}) &= \int _{X_{E}}\operatorname{crem}\Big( c_{r}(\mathcal {S}_{M}^{\vee})c_{|E|-r-1}( \mathcal {Q}_{M}) \Big) \\& = \int _{X_{E}} c_{r}(\mathcal {Q}_{M^{\perp}})c_{|E|-r-1}( \mathcal {S}_{M^{\perp}}^{\vee}). \end{aligned}$$

Hence, the second equality in the theorem follows from the first, so we prove the first equality only.

When \(M\) has rank 0, the Tutte polynomial \(T_{M}(x,y)\) has no \(x\) terms, so the claimed equality is satisfied. Suppose now \(r\geq 1\). If \(|E| = 1\), so that \(M = U_{1,\{0\}}\), then \(\int _{X_{E}} c_{0}(\mathcal {S}_{M}^{\vee}) c_{0}(\mathcal {Q}) = 1\), whereas \(\beta (M) = 1\) since \(T_{U_{1,\{0\}}}(x,y) = x\). Hence, we now suppose \(|E|\geq 2\).

Because the assignment \(M\mapsto c_{r-1}(\mathcal {S}_{M}^{\vee})c_{|E|-r}(\mathcal {Q}_{M})\) is valuative by Proposition 5.6, and the assignment \(M \mapsto \beta (M)\) is also valuative [11, Corollary 5.7], Lemma 5.9 implies that it suffices to show the equality \(\int _{X_{E}} c_{r-1}(\mathcal {S}_{M}^{\vee})c_{|E|-r}(\mathcal {Q}_{M}) = \beta (M)\) for all matroids \(M\) that are realizable over ℂ. So, let \(L\subseteq \mathbb{C}^{E}\) be a realization of a matroid \(M\) of rank \(r\geq 1\) with \(|E|\geq 2\). For \(H\subset \mathbb{C}^{E}\) a generic hyperplane and \(\ell \subset H\) a generic line in \(H\), denote by \(\Omega (\ell ,H)\) the Schubert variety in \({\operatorname{Gr}}(r;E)\) consisting of \(L\in {\operatorname{Gr}}(r;E)\) such that \(\ell \subseteq L \subseteq H\). In [103, Theorem 5.1] it is shown that

$$ \int _{{\operatorname{Gr}}(r;E)}[\overline{T\cdot L}] \cdot [\Omega ( \ell ,H)] = \beta (M). $$

Note that the Chow class \([\Omega (\ell ,H)]\) is equal to \(c_{r-1}(\mathcal {S}^{\vee})c_{|E|-r}(\mathcal {Q})\), where \(\mathcal {S}\) and \(\mathcal {Q}\) are the tautological sub and quotient bundles of \({\operatorname{Gr}}(r;E)\), respectively (see for instance [44, §5.6.2]). Writing \(\varphi _{L}\colon X_{E} \to \overline{T\cdot L} \subset { \operatorname{Gr}}(r;E)\) for the map as defined in §3.1, we have by the functoriality of Chern classes that

$$ \int _{X_{E}} c_{r-1}(\mathcal {S}_{L}^{\vee})c_{|E|-r}(\mathcal {Q}_{L}) = \int _{X_{E}} \operatorname{crem}\varphi _{L}^{*} [\Omega (\ell ,H)]. $$

We now break into two cases. First, suppose the matroid \(M\) is disconnected, say \(M = M_{1} \oplus M_{2}\) for matroids \(M_{1}\) and \(M_{2}\) on nonempty ground sets. Then, Proposition 5.12 states that \(\dim P(M) < n\), so that \(\dim \overline{T\cdot L} < n\). Thus, we have \(\varphi _{L}^{*}[\Omega (\ell ,H)] = 0\), as the pullback of the \(n\)-codimensional class \([\Omega (\ell ,H)]\) to \(\overline{T\cdot L}\) is already 0 by dimensional reason. We also have \(\beta (M) = 0\) since \(T_{M}(x,y) = T_{M_{1}}(x,y) T_{M_{2}}(x,y)\) and both \(T_{M_{1}}\) and \(T_{M_{2}}\) have no constant terms. Now, suppose \(M\) is connected, in which case Proposition 5.12 states that \(\dim P(M) = \dim \overline{T\cdot L} = n\), so that \(\varphi _{L}\) is birational onto its image. Then, the push-pull formula implies that

$$\begin{aligned} \int _{X_{E}} \operatorname{crem}\varphi _{L}^{*} [\Omega (\ell ,H)] & = \int _{{\operatorname{Gr}}(r;E)}({\varphi _{L}}_{*}[X_{E}]) \cdot [ \Omega (\ell ,H)] \\ & = \int _{{\operatorname{Gr}}(r;E)}[ \overline{T\cdot L}] \cdot [\Omega (\ell ,H)] = \beta (M). \end{aligned}$$

Thus, we have the desired equality in both cases. □

Appendix II: The tropical logarithmic Poincaré-Hopf theorem: representable case

A reformulation of the Poincaré-Hopf theorem states that the (topological) Euler characteristic \(\chi (X)\) of a compact manifold is equal to the self-intersection number of its diagonal \(\operatorname{diag}(X)\) in \(X\times X\). In an attempt to create a tropical analogue, Rau computed the self-intersection number of the diagonal of the Bergman class of a matroid [96].

Theorem II.1

[96, Theorem 1.1]

Let \(M\) be a loopless matroid of rank \(r\), and let \(\operatorname{diag}(\Delta _{M})\) be the Minkowski weight of constant weight 1 on the diagonal copy of \(\Sigma _{M}\) inside \(\Sigma _{M}\times \Sigma _{M}\). Then, as a tropical subcycle of \(\Delta _{M}\times \Delta _{M}\), its self-intersection number is given by

$$ \deg (\operatorname{diag}(\Delta _{M})^{2}) = (-1)^{r-1}\beta (M). $$

In [96, Remark 1.7], the author expresses a desire for a classical counterpart to Theorem II.1. The goal in this section is to provide such a classical counterpart. We give a geometric proof of Theorem II.1 in the representable case, using the intuition gained from tautological bundles on matroids and reducing to a logarithmic version of the Poincaré Hopf theorem.

Proof of Theorem II.1 when \(M\) is representable

Let \(L \subseteq \mathbb{C}^{E}\) be a realization of the matroid \(M\). The first step is to translate the tropical self-intersection \(\deg (\operatorname{diag}(\Delta _{M})^{2}) \) into a Chow-theoretic intersection. To do this, we recall that the tropical intersection \(\operatorname{diag}(\Delta _{M})^{2}\) is computed by expressing the diagonal Minkowski weight \([\operatorname{diag}(\Sigma _{M})]\) as the intersection of the Minkowski weight \([\Sigma _{M}\times \Sigma _{M}]\) with \(r-1\) piecewise linear functions. This is summarized in [96, Sect. 2] and uses [51, Proposition 3.10].

Next, the tropical intersection of a weighted fan with a piecewise linear function [3, Definition 3.4] mirrors the intersection of the corresponding Minkowski weight with a divisor on a toric variety ([76, Lemma 2.5] or [69, Theorem 27]). Thus, to compute the intersection \(\operatorname{diag}(\Delta _{M})^{2}\), we start with \(\operatorname{diag}(W_{L})\subset W_{L}\times W_{L}\subset X_{E} \times X_{E}\) and perform three steps:

  1. (1)

    Refine the fan \(\Sigma _{E}^{2}\) of \(X_{E}\times X_{E}\) to \(\widetilde{\Sigma}\) so that the piecewise linear functions used in [96, Proposition 2.6] are linear on each cone of the fan \(\widetilde{\Sigma}\).

  2. (2)

    Take the proper transform of \(\operatorname{diag}(W_{M})\) and \(W_{L}\times W_{L}\) in \(X_{\widetilde{\Sigma}}\) to get \(\widetilde{\operatorname{diag}(W_{L})}\) and \(\widetilde{W_{L}\times W_{L}}\).

  3. (3)

    Evaluate \(\int _{\widetilde{W_{L}\times W_{L}}}{[ \widetilde{\operatorname{diag}(W_{L})}]^{2}}\) in Chow theory.

We know the final answer is independent of the choice of sufficiently refined \(\widetilde{\Sigma}\) by the equivalence with the tropical intersection number, and this will also be implied by the proof below.

At this point, we will translate our question into the self-intersection of a section within the projectivization of a tautological bundle. Let \(\phi \) be the map

$$\begin{aligned} \phi \colon X_{\widetilde{\Sigma}}\dashrightarrow X_{E}\times \mathbb{P}^{n} \end{aligned}$$

given on the open torus \(T\times T\) by \((x,y)\mapsto (x,x^{-1}y)\). Similarly, let

$$\begin{aligned} \phi _{\operatorname{trop}}\colon (\mathbb{Z}^{n+1}/\mathbb{Z} \textbf{1})\times (\mathbb{Z}^{n+1}/\mathbb{Z}\textbf{1})&\to (\mathbb{Z}^{n+1}/ \mathbb{Z}\textbf{1})\times (\mathbb{Z}^{n+1}/\mathbb{Z}\textbf{1}) \\ (u,v)&\mapsto (u,-u+v). \end{aligned}$$

We can and will choose \(\widetilde{\Sigma}\) so that it contains the fan obtained by \(\phi _{\operatorname{trop}}^{-1}\) applied to the fan of \(X_{E}\times \mathbb{P}^{n}\). This means \(\phi \) is now a regular map \(X_{\widetilde{\Sigma}}\xrightarrow{\phi} X_{E}\times \mathbb{P}^{n}\). We now claim to have the following diagram where the vertical arrows are all birational morphisms

figure f

The two things to check are that \(\widetilde{\operatorname{diag}(W_{L})}\) and \(\widetilde{W_{L}\times W_{L}}\) map birationally onto \(W_{L}\times \{\mathbf{1}\}\) and \(\mathbb{P}(S_{L})|_{W_{L}}\) respectively. This is possible because it suffices to check that this is true when restricted to the open torus \(\phi |_{T\times T}\) as \(\widetilde{\operatorname{diag}(W_{L})}\) and \(\widetilde{W_{L}\times W_{L}}\) are irreducible. To see that \((\widetilde{W_{L}\times W_{L}})\cap (T\times T)\) maps into \(\mathbb{P}(S_{L})|_{W_{L}}\), we need our convention that the fiber of \(\mathbb{P}(S_{L})\to X_{E}\) over \(t\in T\) is \(t^{-1}\mathbb{P}(L)\subset \mathbb{P}^{n}\).

To proceed, we need to know that the pullback of the Chow class \([W_{L}\times \{\mathbf{1}\}]\) agrees with the Chow class of the proper transform, or equivalently that

$$\begin{aligned}{} [\widetilde{\operatorname{diag}(W_{L})} ] &= \phi ^{*}[W_{L}\times \{ \mathbf{1}\}]. \end{aligned}$$
(6)

To prove (6), one first notes that the wonderful compactification \(W_{L}\) intersects the torus orbits of the permutohedral toric variety \(X_{E}\) properly [71, Theorem 6.3]. This implies \(W_{L}\times \{\mathbf{1}\}\) intersects the torus orbits of \(X_{E}\times \mathbb{P}^{n}\) properly. Finally, applying the dimension count in Lemma II.2 below yields (6). Alternatively, it also is possible to deduce (6) from Lemma 9.8.

Applying (6) to the problem at hand, we obtain

$$\begin{aligned} \int _{\widetilde{W_{L}\times W_{L}}}[ \widetilde{\operatorname{diag}(W_{L})} ]^{2} &=\int _{ \widetilde{W_{L}\times W_{L}}}\phi ^{*}[W_{L}\times \{\mathbf{1}\}]^{2} = \\ \int _{\mathbb{P}(S_{L})|_{W_{L}}}\phi _{*}\phi ^{*}([W_{L}\times \{ \mathbf{1}\}]^{2}) &= \int _{\mathbb{P}(S_{L})|_{W_{L}}}[W_{L}\times \{\mathbf{1}\}]^{2}. \end{aligned}$$

At this point, one can use the formula for the class of \([W_{L}\times \{\mathbf{1}\}]\) as the projectivization of a subbundle [44, Proposition 9.13] and finish by a computation.

Instead of doing the computation, we will present a geometric proof, connecting the self intersection with the log-tangent sheaf and finally reducing to a logarithmic version of the Poincaré-Hopf theorem. To make this connection, we will need to show that

$$\begin{aligned} N_{(W_{L}\times \{\mathbf{1}\})/(\mathbb{P}(S_{L})|_{W_{L}})}=T_{W_{L}}(- \log D_{W_{L}}). \end{aligned}$$
(7)

To compute the normal bundle of \(W_{L}\times \{\mathbf{1}\}\) in \(\mathbb{P}(S_{L})|_{W_{L}}\), we will express \(W_{L}\times \{\mathbf{1}\}\) as the zero locus of a section of a vector bundle on \(\mathbb{P}(S_{L})|_{W_{L}}\). The locus \(W_{L}\times \{\mathbf{1}\}\subset \mathbb{P}(S_{L})|_{W_{L}}\) can be described as the locus in \(\mathbb{P}(S_{L})|_{W_{L}}\), where the universal line is parallel to \(\mathbf{1}\). This is equivalently the zero locus of the map

$$\begin{aligned} \mathcal{O}_{\mathbb{P}(S_{L})|_{W_{L}}}(-1)\to \pi ^{*}S_{L}|_{W_{L}}/( \mathcal{O}_{\mathbb{P}(S_{L})|_{W_{L}}}\cdot \mathbf{1}). \end{aligned}$$

The target \(\pi ^{*}S_{L}|_{W_{L}}/(\mathcal{O}_{\mathbb{P}(S_{L})|_{W_{L}}} \cdot \mathbf{1})\) is given taking the quotient of the inclusion of the constant section \(\mathcal{O}|_{W_{L}}\cdot \mathbf{1}=\mathcal{O}|_{W_{L}}\cdot (1, \ldots ,1)\) in \(S_{L}|_{W_{L}}\subset \mathcal{O}_{W_{L}}^{n+1}\), and pulling back by the projection \(\pi \colon \mathbb{P}(S_{L})|_{W_{L}}\to W_{L}\). We have already taken the quotient \(S_{L}|_{W_{L}}/(\mathcal{O}_{W_{L}}\cdot \mathbf{1})\) in Theorem 8.8 and identified it as \(T_{W_{L}}(-\log D_{W_{L}})\).

Thus, \(W_{L}\times \{\mathbf{1}\}\subset \mathbb{P}(S_{L})|_{W_{L}}\) is the zero locus of the map

$$\begin{aligned} \mathcal{O}_{\mathbb{P}(S_{L})|_{W_{L}}}(-1)\to \pi ^{*}T_{W_{L}}(- \log D_{W_{L}}), \end{aligned}$$

or equivalently the zero locus of a section of \(\pi ^{*}T_{W_{L}}(-\log D_{W_{L}})\otimes \mathcal{O}_{\mathbb{P}(S_{L})|_{W_{L}}}(1)\).

The restriction of a vector bundle to the zero locus of a section vanishing in proper codimension is the normal bundle of that section [44, Proposition-Definition 6.15]. Thus, the restriction of the vector bundle \(\pi ^{*}T_{W_{L}}(-\log D_{W_{L}})\otimes \mathcal{O}_{\mathbb{P}(S_{L})|_{W_{L}}}(1)\) to \(W_{L}\times \{\mathbf{1}\}\) is the normal bundle \(N_{(W_{L}\times \{\mathbf{1}\})/(\mathbb{P}(S_{L})|_{W_{L}})}\). To perform the restriction, \(\mathcal{O}_{\mathbb{P}(S_{L})|_{W_{L}}}(1)\) restricts to the trivial bundle as the universal line is constant along \(W_{L}\times \{\mathbf{1}\}\) and \(\pi ^{*}T_{W_{L}}(-\log D_{W_{L}})\) restricts to \(T_{W_{L}}(-\log D_{W_{L}})\) as \(W_{L}\times \{\mathbf{1}\}\) maps isomorphically to \(W_{L}\) under \(\pi \). Therefore, \(\pi ^{*}T_{W_{L}}(-\log D_{W_{L}})\otimes \mathcal{O}_{\mathbb{P}(S_{L})|_{W_{L}}}(1)\) restricted to \(W_{L}\times \{\mathbf{1}\}\) is \(T_{W_{L}}(-\log D_{W_{L}})\), concluding our proof of (7).

Finally,

$$\begin{aligned} \int _{\mathbb{P}(S_{L})|_{W_{L}}}[W_{L}\times \{\mathbf{1}\}]^{2} = c_{ \operatorname{top}}(N_{(W_{L}\times \{\mathbf{1}\})/\mathbb{P}(S_{L})}) \end{aligned}$$

by [82], and by (7),

$$\begin{aligned} c_{\operatorname{top}}(N_{(W_{L}\times \{\mathbf{1}\})/\mathbb{P}(S_{L})})=c_{ \operatorname{top}}(T_{W_{L}}(-\log D_{W_{L}})). \end{aligned}$$

The top Chern class \(c_{\operatorname{top}}(T_{W_{L}}(-\log D_{W_{L}}))\) is \(c_{r-1}(\mathcal{S_{L}}|_{W_{L}})\) by Theorem 8.8 and \(\int _{X_{E}} c_{r-1}(\mathcal{S_{L}}|_{W_{L}}) = \int _{X_{E}} c_{r-1}( \mathcal {S}_{L})c_{|E|-r}(\mathcal {Q}_{M})\) is equal to \((-1)^{r-1}\beta (M)\) by Theorem 6.2. □

We chose to conclude \(c_{\operatorname{top}}(T_{W_{L}}(-\log D_{W_{L}}))=(-1)^{r-1}\beta (M)\) using the framework given in this paper to be self-contained. However, there is a more classical approach to get the same result given in Remark 8.9, which uses a logarithmic version of the Poincaré Hopf theorem to relate the Chern class to the topological Euler characteristic of the hyperplane arrangement complement \(W_{L}\backslash D_{W_{L}}\).

Lemma II.2 below was used in the proof of Theorem II.1 in the representable case as a substitute for Lemma 9.8, giving a geometric proof independent of tropical methods.

Lemma II.2

Let \(Y\subset T\) be an irreducible subvariety of a torus. Let \(X_{\Sigma}\) be a smooth toric variety compactifying \(T\) and \(\overline{Y}\) be the closure of \(Y\) in \(X_{\Sigma}\). Suppose \(\overline{Y}\) intersects each torus orbit in \(X_{\Sigma}\) properly. Then, the following statement holds:

Let \(\widetilde{\Sigma}\) be a unimodular fan refining \(\Sigma \), and \(\pi \colon \widetilde{X}\to X\) be the corresponding map of toric varieties. Then, \(\pi ^{-1}(\overline{Y})\) is equal to the closure \(\overline{\pi ^{-1}(Y)}\) in \(X_{\widetilde{\Sigma}}\). In particular, \(\pi ^{*}[\overline{Y}]=[\overline{\pi ^{-1}(Y)}]\) in \(A^{\bullet}(\pi ^{-1}(\overline{Y}))=A^{\bullet}( \overline{\pi ^{-1}(Y)})\), which implies equality in \(A^{\bullet}(X_{\widetilde{\Sigma}})\).

Proof

We clearly have \(\pi ^{-1}(\overline{Y})\supset \overline{\pi ^{-1}(Y)}\). To show the reverse inclusion, we first show \(\dim (\pi ^{-1}(\overline{Y}\backslash Y))<\dim (Y)\). To do this, we will show for all positive-dimensional cones \(\sigma \) in \(\Sigma \) and the corresponding torus orbit \(O_{\sigma}\), we must have \(\dim (\pi ^{-1}(O_{\sigma}\cap \overline{Y}))<\dim (Y)\).

By the assumption that \(\overline{Y}\) intersects each torus orbit of \(X_{\Sigma}\) properly, \(\dim (O_{\sigma}\cap \overline{Y})\leq \dim (Y)-\dim (\sigma )\), where either equality holds or the intersection \(O_{\sigma}\cap \overline{Y}\) is empty, in which case the dimension is understood to be \(-\infty \). By [66, Proposition 2.14], the fibers over \(O_{\sigma}\) under \(\pi \colon \widetilde{X}\to X\) have dimension at most \(\dim (\sigma )-1\). Therefore,

$$\begin{aligned} \dim (\pi ^{-1}(O_{\sigma}\cap \overline{Y}))\leq \dim (O_{\sigma} \cap \overline{Y})+\dim (\sigma )-1 < \dim (Y). \end{aligned}$$

To finish, we first note that every irreducible component of \(\pi ^{-1}(\overline{Y})\) has dimension at least \(\dim (Y)\) [44, Theorem 0.2], as \(\pi ^{-1}(\overline{Y})\) can be expressed as the intersection between the graph of \(\pi \) and \(X_{\widetilde{\Sigma}}\times \overline{Y}\) inside the smooth variety \(X_{\widetilde{\Sigma}}\times X_{\Sigma}\). Next, \(\pi ^{-1}(\overline{Y})=\pi ^{-1}(Y)\sqcup \bigcup _{\sigma}\pi ^{-1}(O_{ \sigma}\cap \overline{Y})\), where the union is over all positive-dimensional cones \(\sigma \) in \(\Sigma \). Since we have just shown that \(\pi ^{-1}(O_{\sigma}\cap \overline{Y})<\dim (Y)\), \(\pi ^{-1}(\overline{Y})\) must be irreducible. Since \(\pi ^{-1}(\overline{Y})\) is an irreducible variety containing \(\overline{\pi ^{-1}(Y)}\) and their dimensions agree, \(\pi ^{-1}(\overline{Y})=\overline{\pi ^{-1}(Y)}\).

To deduce \(\pi ^{*}[\overline{Y}]=[\overline{\pi ^{-1}(Y)}]\), we note that \(\pi ^{*}[\overline{Y}]\) is a well-defined class in \(A^{\bullet}(\pi ^{-1}(\overline{Y}))=A^{\bullet}( \overline{\pi ^{-1}(Y)})\) by construction of the cap product using [53, Definition 8.1.2], so it must be the fundamental class \([\overline{\pi ^{-1}(Y)}]\). □

Appendix III: Global Chern roots

In this section we show that one can decompose tautological \(K\)-classes of matroids as sums of classes of line bundles. The construction of these decompositions are analogous to considering successive quotients in filtrations of tautological bundles of Grassmannians, and likewise are not canonical. Moreover, they are not directly applicable for proving positivity statements because the line bundle summands are generally not nef. However, they relate the tautological \(K\)-classes of matroids to certain constructions in previous works [45, 51, 69]. Also, they are useful in computer computations, for instance in Macaulay2 [59], which has been helpful for the development of this paper.

Let \(M\) be a matroid of rank \(r\) on \(E\). Fix a sequence \({\boldsymbol {M}}= (M_{0}, \ldots , M_{n+1})\) consisting of matroids \(M_{i}\) of rank \(i\) on \(E\) such that \(M_{r} = M\) and \(B_{\sigma}(M_{i}) \subset B_{\sigma}(M_{i+1})\) for all permutations \(\sigma \in \mathfrak {S}_{E}\) and \(i = 0, \ldots , n\). Such a sequence \({\boldsymbol {M}}\) is known as a “full flag matroid that lifts \(M\)” [16, Ch. 1]. One such \({\boldsymbol {M}}\) is the “full Higgs lift” of \(M\) which is obtained by defining

$$ \text{the set of bases of } M_{i} = \left \{S \in \textstyle \binom{E}{i} \ \middle | \ \text{$S$ contains or is contained in a basis of $M$}\right \} $$

for all \(0 \leq i \leq n+1\). For each \(0 \leq i \leq n\), we express the differences \([\mathcal {S}_{M_{i+1}}] - [\mathcal {S}_{M_{i}}]\) and \([\mathcal {Q}_{M_{i}}] -[\mathcal {Q}_{M_{i+1}}]\) as \(K\)-classes of line bundles as follows. As denoted in §2.7, let \(\mathcal {O}(D_{P})\) be the \(T\)-equivariant line bundle of \(X_{E}\) corresponding to a lattice polytope \(P\subset \mathbb{R}^{E}\) whose normal fan coarsens \(\widetilde{\Sigma}_{E}\). For a matroid \(N\) with ground set \(E\), we then have by the discussion in §2.7 that

$$ [\mathcal {O}(D_{-P(N)})]_{\sigma }= \prod _{i \in B_{\sigma}(N)} T_{i} \quad \text{and}\quad [\mathcal {O}(D_{P(N^{\perp})})]_{\sigma }= \prod _{i \notin B_{\sigma}(N)} T_{i}^{-1}. $$

Thus, since \(B_{\sigma}(M_{i}) \subset B_{\sigma}(M_{i+1})\) for all \(0\leq i\leq n\) and permutations \(\sigma \), we have that

$$ \begin{aligned}{} [\mathcal {S}_{M_{i+1}}] - [\mathcal {S}_{M_{i}}] & = [ \mathcal {O}(D_{-P(M_{i+1})})^{\vee }\otimes \mathcal {O}(D_{-P(M_{i})})] \qquad \text{and} \\ [\mathcal {Q}_{M_{i}}] -[\mathcal {Q}_{M_{i+1}}] & = [\mathcal {O}(D_{P({M_{i}}^{ \perp})}) \otimes \mathcal {O}(D_{P({M_{i+1}}^{\perp})})^{\vee}]. \end{aligned} $$

In particular, since \(M_{0} = U_{0,E}\) and \(M_{n+1} = U_{n+1, E}\) so that \([\mathcal {S}_{M_{0}}] = [\mathcal {Q}_{M_{n+1}}] = 0\), we have that

$$ \begin{aligned} &[\mathcal {S}_{M}] = \sum _{i=0}^{r-1} [\mathcal {O}(D_{-P(M_{i+1})})^{ \vee }\otimes \mathcal {O}(D_{-P(M_{i})})] \qquad \text{and} \\ &[\mathcal {Q}_{M}] = \sum _{j=r}^{|E|-1} [\mathcal {O}(D_{P({{M_{j}}^{ \perp}})}) \otimes \mathcal {O}(D_{P({{M_{j+1}}^{\perp}})})^{\vee}] \qquad \text{as elements in $K_{T}^{0}(X_{E})$.} \end{aligned} $$
(8)

One might hope that this decomposition implied positivity properties of \([\mathcal{S}_{M}^{\vee}]\) and \([\mathcal{Q}_{M}]\). However, for example for \([\mathcal{S}_{M}^{\vee}]\), the line bundles \(\mathcal {O}(D_{-P(M_{i+1})}) \otimes \mathcal {O}(D_{-P(M_{i})})^{\vee}\) is nef if and only if \(P(M_{i})\) is a weak Minkowski summand of \(P(M_{i+1})\) — see [12, §2.2 & §2.4] for a proof. This however seldom occurs: When a matroid \(M\) is connected after removing its loops and coloops, the only weak Minkowski summand of \(P(M)\) is itself [90]. Hence, although the bundles \(\mathcal {S}_{L}^{\vee}\) and \(\mathcal {Q}_{L}\) are globally generated and hence nef if \(L\) is a realization of \(M\), it is unclear how to establish from the Chern roots listed here that the positivity property of \(\mathcal {S}_{L}^{\vee}\) and \(\mathcal {Q}_{L}\) as nef vector bundles persist for arbitrary (not necessarily realizable) matroids.

Remark III.1

Let \(z_{S} \in A^{1}(X_{E})\) denote the divisor class of the torus-invariant divisor \(Z_{S}\subset X_{E}\) corresponding to a nonempty proper subset \(S\) of \(E\), and denote \(z_{E} = -\alpha \in A^{1}(X_{E})\). Combining Remark 2.4 with a well-known description for the Chow ring of a smooth complete toric variety (see for instance [52, Ch. 5]), one has that the Chow ring of the permutohedral variety has a presentation

$$ A^{\bullet}(X_{E}) = \frac{\mathbb{Z}[z_{S} \mid \emptyset \subsetneq S \subseteq E]}{\langle z_{S}z_{S'} \mid S\nsubseteq S' \text{ and } S\nsupseteq S'\rangle + \langle \sum _{i\in S \subseteq E} z_{S} \mid i \in E\rangle}. $$

Note that in this presentation, one has \(\sum _{\emptyset \subsetneq S\subseteq E} z_{S} = \beta \) because it follows from the end of Remark 2.4 that \(\alpha + \beta = \sum _{\emptyset \subsetneq S \subsetneq E} z_{S}\). For a matroid \(N\) of rank \(r\) on \(E\), the translate \(P' = -P(N) + r\mathbf {e}_{0}\) of its base polytope lies in the lattice \(\mathbf {1}^{\perp}\). The support function \(h_{P(N)}(x) = \max _{\mathbf {m}\in P(M)}\langle \mathbf {m}, x \rangle \) of the base polytope satisfies \(h_{P(N)}(\mathbf {e}_{S}) = {\operatorname{rk}}_{M}(S)\) for any subset \(S\subseteq E\), and hence the support function \(h_{P'}\) of the translate \(P'\) satisfies \(h_{P'}(\mathbf {e}_{S}) = {\operatorname{rk}}_{N}(S) - r\) if \(0\in S\) and \(h_{P'}(\mathbf {e}_{S}) = {\operatorname{rk}}_{N}(S)\) otherwise. Thus, by the discussion in §2.7 and the fact that \(\alpha = \sum _{0\in S\subsetneq E} z_{S}\) (Remark 2.4), one has

$$ \sum _{\emptyset \subsetneq S \subseteq E} \operatorname{rk}_{N}(S) z_{S} = [D_{-P(N)}] = [D_{P(N^{\perp})}] \quad \text{as elements in }A^{1}(X_{E}), $$

where the last equality follows from the fact that \(P(N^{\perp})\) and \(-P(N)\) are translates \(P(N^{\perp}) = -P(N) + \mathbf {1}\) of each other. In particular, one can restate the decomposition of \([\mathcal {S}_{M}]\) and \([\mathcal {Q}_{M}]\) into sums of line bundles in Equation (8) by stating that a possible collection of Chern roots for \([\mathcal {S}_{M}]\) and \([\mathcal {Q}_{M}]\) is given by

$$ \begin{aligned} \text{Chern roots of } [\mathcal {S}_{M}] &= \Big\{ \sum _{ \emptyset \subsetneq S\subseteq E} \big(-\operatorname{rk}_{M_{i+1}}(S) + \operatorname{rk}_{M_{i}}(S) \big)z_{S} \Big\} _{i = 0, \ldots , r-1} \quad \text{and} \\ \text{Chern roots of } [\mathcal {Q}_{M}] &= \Big\{ \sum _{\emptyset \subsetneq S\subseteq E} \big(-\operatorname{rk}_{M_{i+1}}(S) + \operatorname{rk}_{M_{i}}(S) \big)z_{S} \Big\} _{i = r, \ldots , n}. \end{aligned} $$

The “modular filter” of two consecutive matroids \(M_{i}\) and \(M_{i+1}\) in the sequence \({\boldsymbol {M}}\) is defined as the collection \(\mathscr{F}_{i} = \{S\subseteq E \mid \operatorname{rk}_{M_{i+1}}(S) - \operatorname{rk}_{M_{i}}(S) = 1\}\). Writing \(\alpha _{\mathscr{F}_{i}} = \sum _{ \substack{S\in \mathscr{F}_{i}\\ \emptyset \subsetneq S \subsetneq E}} z_{S}\), we have that the elements \(\alpha - \alpha _{\mathscr{F}_{i}}\) for various \(i\) give a collection of Chern roots for \([\mathcal {S}_{M}]\) and \([\mathcal {Q}_{M}]\). These elements \(\alpha - \alpha _{\mathscr{F}_{i}}\) appeared previously in [69, Remark 31] and [51], and the interpretation of them as Chern roots of a \(K\)-class first appeared in [45, Remark 7.2.6]. The elements \(\alpha - \alpha _{\mathscr{F}_{i}}\) when \(\mathscr{F}_{i}\) are principal filters were studied in [14] to give a generalization of a volume formula for generalized polyhedra [95, Corollary 9.4] and a simplified proof for the portion of the Hodge theory of matroids in [1] relevant to log-concavity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berget, A., Eur, C., Spink, H. et al. Tautological classes of matroids. Invent. math. 233, 951–1039 (2023). https://doi.org/10.1007/s00222-023-01194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-023-01194-5

Navigation