Skip to main content
Log in

Arithmeticity, superrigidity and totally geodesic submanifolds of complex hyperbolic manifolds

  • Published:
Inventiones mathematicae Aims and scope

Abstract

For \(n \ge 2\), we prove that a finite volume complex hyperbolic n-manifold containing infinitely many maximal properly immersed totally geodesic submanifolds of real dimension at least two is arithmetic, paralleling our previous work for real hyperbolic manifolds. As in the real hyperbolic case, our primary result is a superrigidity theorem for certain representations of complex hyperbolic lattices. The proof requires developing new general tools not needed in the real hyperbolic case. Our main results also have a number of other applications. For example, we prove nonexistence of certain maps between complex hyperbolic manifolds, which is related to a question of Siu, that certain hyperbolic 3-manifolds cannot be totally geodesic submanifolds of complex hyperbolic manifolds, and that arithmeticity of complex hyperbolic manifolds is detected purely by the topology of the underlying complex variety, which is related to a question of Margulis. Our results also provide some evidence for a conjecture of Klingler that is a broad generalization of the Zilber–Pink conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ash, A., Mumford, D., Rapoport, M., Tai, Y.-S.: Smooth Compactifications of Locally Symmetric Varieties. Cambridge Mathematical Library, 2nd edn. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Bader, U., Fisher, D., Miller, N., Stover, M.: Arithmeticity, superrigidity, and totally geodesic submanifolds. Ann. Math. (2) 193(3), 837–861 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Bader, U., Furman, A.: Super-rigidity and non-linearity for lattices in products. Compos. Math. 156(1), 158–178 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Bader, U., Furman, A.: An extension of Margulis’s superrigidity theorem. In: Dynamics. Geometry, Number Theory–The Impact of Margulis on Modern Mathematics, pp. 47–65. University Chicago Press, Chicago, IL (2022)

  5. Baldi, G., Ullmo, E.: Special subvarieties of non-arithmetic ball quotients and Hodge Theory. Ann. of Math. (2) 197(1), 159–220 (2023)

  6. Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of Nonpositive Curvature, Volume 61 of Progress in Mathematics. Birkhäuser, Basel (1985)

    MATH  Google Scholar 

  7. Barthel, G., Hirzebruch, F., Höfer, T.: Geradenkonfigurationen und Algebraische Flächen. Aspects of Mathematics, D4. Friedr Vieweg & Sohn, Braunschweig (1987)

    MATH  Google Scholar 

  8. Borel, A.: Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem. J. Differ. Geom. 6, 543–560 (1972)

    MathSciNet  MATH  Google Scholar 

  9. Borel, A., Tits, J.: Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I. Invent. Math. 12, 95–104 (1971)

    MathSciNet  MATH  Google Scholar 

  10. Bourbaki, N.: Éléments de mathématique. XXVI. Groupes et algèbres de Lie Chapitre 1: Algèbres de Lie., vol. 1285. Actualités Sci. Indust., Hermann (1960)

    MATH  Google Scholar 

  11. Burger, M., Iozzi, A.: A measurable Cartan theorem and applications to deformation rigidity in complex hyperbolic geometry. Pure Appl. Math. Q. 4(1, Special Issue: In honor of Grigory Margulis. Part 2), 181–202 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Calabi, E., Vesentini, E.: On compact, locally symmetric Kähler manifolds. Ann. Math. 2(71), 472–507 (1960)

    MATH  Google Scholar 

  13. Cartan, E.: Sur le groupe de la géométrie hypersphérique. Comment. Math. Helv. 4(1), 158–171 (1932)

    MathSciNet  MATH  Google Scholar 

  14. Cartwright, D., Steger, T.: Enumeration of the 50 fake projective planes. C. R. Math. Acad. Sci. Paris 348(1–2), 11–13 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Chesebro, E., DeBlois, J.: Algebraic invariants, mutation, and commensurability of link complements. Pacific J. Math. 267(2), 341–398 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Clozel, L., Ullmo, E.: Équidistribution de sous-variétés spéciales. Ann. Math. (2) 161(3), 1571–1588 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Corlette, K.: Flat \(G\)-bundles with canonical metrics. J. Differ. Geom. 28(3), 361–382 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Dani, S.G., Margulis, G.A.: Limit distributions of orbits of unipotent flows and values of quadratic forms. In: Gel’fand, I.M. (ed.) Advances in Soviet Mathematics, vol. 16, pp. 91–137. American Mathematical Society, Providence (1993)

    Google Scholar 

  19. Delp, K., Hoffoss, D., Manning, J.: Problems in Groups, Geometry, and Three-Manifolds. Preprint: arXiv:1512.04620

  20. Deraux, M.: A new nonarithmetic lattice in \({\rm PU}(3,1)\). Algebr. Geom. Topol. 20(2), 925–963 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Deraux, M., Parker, J.R., Paupert, J.: New nonarithmetic complex hyperbolic lattices II. Michigan Math. J. 70(1), 135–205 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Esnault, H., Groechenig, M.: Cohomologically rigid local systems and integrality. Selecta Math. (N.S.) 24(5), 4279–4292 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Gelander, T., Levit, A.: Counting commensurability classes of hyperbolic manifolds. Geom. Funct. Anal. 24(5), 1431–1447 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Goldman, W.M.: Complex Hyperbolic Geometry. Oxford Mathematical Monographs, Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  25. Gromov, M., Piatetski-Shapiro, I.: Nonarithmetic groups in lobachevsky spaces. Inst. Hautes Études Sci. Publ. Math. 66, 93–103 (1988)

    MathSciNet  MATH  Google Scholar 

  26. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, Volume 80 of Pure and Applied Mathematics. Academic Press, Cambridge (1978)

    Google Scholar 

  27. Hirzebruch, F.: Automorphe Formen und der Satz von Riemann-Roch. In: Symposium internacional de topología algebraica International symposium on algebraic topology, pp 129–144. Universidad Nacional Autónoma de México and UNESCO, (1958)

  28. Holzapfel, R.-P.: Ball and Surface Arithmetics. Aspects of Mathematics, vol. E29. Friedr. Vieweg & Sohn, Braunschweig (1998)

    MATH  Google Scholar 

  29. Humphreys, J.E.: Linear Algebraic Groups. Graduate Texts in Mathematics, vol. 21. Springer-Verlag, New York (1975)

    Google Scholar 

  30. Kapovich, M.: A survey of complex hyperbolic Kleinian groups. In: In The Tradition of Thurston II. Geometry and Groups, pp. 7–51. Springer, Cham (2022)

  31. Karpelevič, F.I.: Surfaces of transitivity of a semisimple subgroup of the group of motions of a symmetric space. Doklady Akad. Nauk SSSR (N.S.) 93, 401–404 (1953)

    MathSciNet  Google Scholar 

  32. Klingler, B.: Hodge loci and atypical intersections: conjectures. Preprint: arXiv:1711.09387

  33. Klingler, B.: Sur la rigidité de certains groupes fondamentaux, l’arithméticité des réseaux hyperboliques complexes, et les “faux plans projectifs’’. Invent. Math. 153(1), 105–143 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Klingler, B.: Symmetric differentials, Kähler groups and ball quotients. Invent. Math. 192(2), 257–286 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Knapp, A.W.: Lie Groups Beyond an Introduction, Volume 140 of Progress in Mathematics, 2nd edn. Birkhäuser, Boston (2002)

    Google Scholar 

  36. Koziarz, V., Maubon, J.: Maximal representations of uniform complex hyperbolic lattices. Ann. Math. (2) 185(2), 493–540 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Koziarz, V., Maubon, J.: Finiteness of totally geodesic exceptional divisors in Hermitian locally symmetric spaces. Bull. Soc. Math. France 146(4), 613–631 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Koziarz, V., Mok, N.: Nonexistence of holomorphic submersions between complex unit balls equivariant with respect to a lattice and their generalizations. Am. J. Math. 132(5), 1347–1363 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Maclachlan, C., Reid, A.W.: The Arithmetic of Hyperbolic 3-Manifolds, Volume 219 of Graduate Texts in Mathematics. Springer-Verlag, New York (2003)

    Google Scholar 

  40. Margulis, G.: Problems and conjectures in rigidity theory. In: Mathematics: Frontiers and Perspectives, pp. 161–174. American Mathematical Society, Providence RI, (2000)

  41. Margulis, G.A.: Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than \(1\). Invent. Math. 76(1), 93–120 (1984)

    MathSciNet  MATH  Google Scholar 

  42. Margulis, G.A.: Discrete Subgroups of Semisimple Lie Groups, volume 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, New York (1991)

    Google Scholar 

  43. Mochizuki, T.: Kobayashi-Hitchin correspondence for tame harmonic bundles and an application. Astérisque, (309) (2006)

  44. Mohammadi, A., Margulis, G.: Arithmeticity of hyperbolic 3-manifolds containing infinitely many totally geodesic surfaces. Ergod. Theory Dyn. Syst. 42(3), 1188–1219 (2022)

    MathSciNet  MATH  Google Scholar 

  45. Mok, N.: Projective algebraicity of minimal compactifications of complex-hyperbolic space forms of finite volume. In: Perspectives in Analysis, Geometry, and Topology, volume 296 of Progr. Math., pp. 331–354. Birkhäuser/Springer, New York, (2012)

  46. Möller, M., Toledo, D.: Bounded negativity of self-intersection numbers of Shimura curves in Shimura surfaces. Algebra Number Theory 9(4), 897–912 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Mostow, G.D.: Some new decomposition theorems for semi-simple groups. Mem. Am. Math. Soc. 14, 31–54 (1955)

    MathSciNet  MATH  Google Scholar 

  48. Mostow, G.D.: Strong Rigidity of Locally Symmetric Spaces. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, (1973). Annals of Mathematics Studies, No. 78

  49. Mozes, S., Shah, N.: On the space of ergodic invariant measures of unipotent flows. Ergod. Theory Dyn. Syst. 15(1), 149–159 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Müller-Stach, S., Viehweg, E., Zuo, K.: Relative proportionality for subvarieties of moduli spaces of \(K3\) and abelian surfaces. Pure Appl. Math. Q. 5(3, Special Issue: In honor of Friedrich Hirzebruch. Part 2), 1161–1199 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Paupert, J., Wells, J.: Hybrid lattices and thin subgroups of Picard modular groups. Topol. Appl. 269, 106918 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Pozzetti, M.B.: Maximal representations of complex hyperbolic lattices into \({\rm SU}(M, N)\). Geom. Funct. Anal. 25(4), 1290–1332 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Raghunathan, M.S.: Cohomology of arithmetic subgroups of algebraic groups. II. Ann. Math. 2(87), 279–304 (1967)

    MathSciNet  MATH  Google Scholar 

  54. Raghunathan, M.S.: Discrete Subgroups of Lie Groups. Springer-Verlag, New York-Heidelberg, (1972). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68

  55. Ramsay, A.: Virtual groups and group actions. Adv. Math. 6(253–322), 1971 (1971)

    MathSciNet  MATH  Google Scholar 

  56. Ratner, M.: Raghunathan’s topological conjecture and distributions of unipotent flows. Duke Math. J. 63(1), 235–280 (1991)

    MathSciNet  MATH  Google Scholar 

  57. Reid, A.W.: Arithmeticity of knot complements. J. Lond. Math. Soc. (2) 43(1), 171–184 (1991)

    MathSciNet  MATH  Google Scholar 

  58. Simpson, C.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)

    MathSciNet  MATH  Google Scholar 

  59. Siu, Y.-T.: Some recent results in complex manifold theory related to vanishing theorems for the semipositive case. In: Workshop Bonn 1984 (Bonn, 1984), volume 1111 of Lecture Notes in Math., pp. 169–192. Springer (1985)

  60. Tits, J.: Classification of algebraic semisimple groups. In: Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pp. 33–62. Amer. Math. Soc., (1966)

  61. Toledo, D.: Representations of surface groups in complex hyperbolic space. J. Differ. Geom. 29(1), 125–133 (1989)

    MathSciNet  MATH  Google Scholar 

  62. Toledo, D.: Maps between complex hyperbolic surfaces. vol. 97, pp. 115–128. (2003). Special volume dedicated to the memory of Hanna Miriam Sandler (1960–1999)

  63. Tsuji, H.: A characterization of ball quotients with smooth boundary. Duke Math. J. 57(2), 537–553 (1988)

    MathSciNet  MATH  Google Scholar 

  64. Ullmo, E.: Equidistribution de sous-variétés spéciales. II. J. Reine Angew. Math. 606, 193–216 (2007)

    MathSciNet  MATH  Google Scholar 

  65. Ullmo, E., Yafaev, A.: Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture. Ann. Math. (2) 180(3), 823–865 (2014)

    MathSciNet  MATH  Google Scholar 

  66. Vinberg, E.B.: Rings of definition of dense subgroups of semisimple linear groups. Izv. Akad. Nauk SSSR Ser. Mat. 35, 45–55 (1971)

    MathSciNet  MATH  Google Scholar 

  67. Yafaev, A.: Galois orbits and equidistribution: Manin-Mumford and André-Oort. J. Théor. Nombres Bordeaux 21(2), 493–502 (2009)

    MathSciNet  MATH  Google Scholar 

  68. Yau, S.-T.: Calabi’s conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. U.S.A. 74(5), 1798–1799 (1977)

    MathSciNet  MATH  Google Scholar 

  69. Zimmer, R.J.: Ergodic Theory and Semisimple Groups. Monographs in Mathematics, vol. 81. Birkhäuser Verlag, Basel (1984)

    Google Scholar 

Download references

Acknowledgements

The authors thank Domingo Toledo for describing how Simpson’s work leads to Theorem 1.5 and Olivier Biquard for correspondence about the nonuniform case. We thank Bruno Klingler for explaining the relationship to his conjecture discussed in the introduction, Ian Agol for pointing out Theorem 1.8 and Venkataramana, Nicolas Bergeron, and Emmanuel Ullmo for insightful conversations. We also thank Jean Lécureux and Beatrice Pozzetti for conversations related to the proof of Theorem 1.3(2). It is a pleasure to thank Baldi and Ullmo for having explained their approach to us and for various conversations around Hodge Theory. We are grateful to the referees for the constructive comments and recommendations which improved the quality of our exposition.

Funding

Bader was supported by the ISF Moked 713510 grant number 2919/19. Fisher was supported by NSF DMS-1906107. Miller was supported by NSF DMS-2005438/2300370. Stover was supported by Grant Number 523197 from the Simons Foundation/SFARI and Grants DMS-1906088, DMS-2203555 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fisher.

Additional information

To Domingo Toledo with admiration on the occasion of his 75th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bader, U., Fisher, D., Miller, N. et al. Arithmeticity, superrigidity and totally geodesic submanifolds of complex hyperbolic manifolds. Invent. math. 233, 169–222 (2023). https://doi.org/10.1007/s00222-023-01186-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-023-01186-5

Navigation