Skip to main content
Log in

Heights of Kudla–Rapoport divisors and derivatives of \(L\)-functions

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We study special cycles on integral models of Shimura varieties associated with unitary similitude groups of signature \((n-1,1)\). We construct an arithmetic theta lift from harmonic Maass forms of weight \(2-n\) to the arithmetic Chow group of the integral model of a unitary Shimura variety, by associating to a harmonic Maass form \(f\) a linear combination of Kudla–Rapoport divisors, equipped with the Green function given by the regularized theta lift of \(f\). Our main result is an equality of two complex numbers: (1) the height pairing of the arithmetic theta lift of \(f\) against a CM cycle, and (2) the central derivative of the convolution \(L\)-function of a weight \(n\) cusp form (depending on \(f\)) and the theta function of a positive definite hermitian lattice of rank \(n-1\). When specialized to the case \(n=2\), this result can be viewed as a variant of the Gross–Zagier formula for Shimura curves associated to unitary groups of signature \((1,1)\). The proof relies on, among other things, a new method for computing improper arithmetic intersections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. More precisely, these are the harmonic weak Maass forms of [7]. For simplicity we omit the adjective ‘weak’.

  2. More precisely, there is a choice of \(i=\sqrt{-1}\) such that \(\psi _0(ix,x)\) and \(\psi (ix,x)\) are positive definite, and we choose \(\delta _{{{\varvec{k}}}}\) to lie in the same connected component of \(\mathbb {C}\backslash {\mathbb {R}}\) as \(i.\)

  3. In the sense of [11], so \(G_{\ell }\) is the unique deformation of \(G\), with its action of \(\mathcal {O}_{{{\varvec{k}}},\mathfrak {p}}\), to \(R_{\ell }\).

  4. As both \({\mathcal Z}\) and \({\mathcal Y}\) are Cohen–Macaulay, the finite intersection multiplicity agrees with the more natural Serre intersection multiplicity defined as in [33, p. 11] or [16, Section 3.1]. This follows from [32, p. 111].

  5. There is a mild abuse of notation: we are using \(A_0^{\mathrm {univ}}\) to denote both the universal elliptic curve over \({\mathcal M}_{{\mathbb {L}}}\), and the universal elliptic curve over \({\mathcal Y}_{({\mathbb {L}}_0,\Lambda )}\).

References

  1. Berthelot, P., Ogus, A.: Notes on Crystalline Cohomology. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  2. Borcherds, R.E.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132, 491–562 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borcherds, R.: The Gross–Kohnen–Zagier theorem in higher dimensions. Duke Math. J. 97, 219–233 (1999) [Correction in: Duke Math. J. 105(1), 183–184]

  4. Bruinier, J.H.: Borcherds Products on O\((2, l)\) and Chern Classes of Heegner Divisors. Springer Lecture Notes in Mathematics, vol. 1780. Springer, Berlin (2002)

  5. Bruinier, J.H., Burgos, J., Kühn, U.: Borcherds products and arithmetic intersection theory on Hilbert modular surfaces. Duke Math. J. 139, 1–88 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bruinier, J.H., Funke, J.: On two geometric theta lifts. Duke Math. J. 125, 45–90 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bruinier, J.H., Yang, T.H.: Faltings heights of CM cycles and derivatives of \(L\)-functions. Invent. Math. 177, 631–681 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burgos, J., Kramer, J., Kühn, U.: Cohomological arithmetic Chow groups. J. Inst. Math. Jussieu 6, 1–178 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Colmez, P.: Périods des variétés abéliennes à multiplication complexe. Ann. Math. 138, 625–683 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fantechi, B., Göttsche, L., Illusie, L., Kleiman, S., Nitsure, N., Vistoli, A.: Fundamental Algebraic Geometry: Grothendieck’s FGA Explained. Mathematical Surveys and Monographs, vol. 123. American Mathematical Society, Providence (2005)

  11. Gross, B.: On canonical and quasi-canonical liftings. Invent. Math. 84, 321–326 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gross, B., Zagier, D.: Heegner points and derivatives of L-series. Invent. Math. 84, 225–320 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hofmann, E.: Automorphic products on unitary groups. Dissertation, Technische Universität Darmstadt (2011)

  14. Howard, B.: Intersection theory on Shimura surfaces II. Invent. Math. 183(1), 1–77 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Howard, B.: Complex multiplication cycles and Kudla–Rapoport divisors. Ann. Math. 176, 1097–1171 (2012)

    Article  MATH  Google Scholar 

  16. Howard, B.: Complex multiplication cycles and Kudla–Rapoport divisors II. Am. J. Math. (in press)

  17. Krämer, N.: Local models for ramified unitary groups. Abh. Math. Sem. Univ. Hambg. 73, 67–80 (2003)

    Article  MATH  Google Scholar 

  18. Kudla, S.: Algebraic cycles on Shimura varieties of orthogonal type. Duke Math. J. 86(1), 39–78 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kudla, S.: Integrals of Borcherds forms. Compos. Math. 137, 293–349 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kudla, S.: Special Cycles and Derivatives of Eisenstein Series. Heegner Points and Rankin L-Series. Mathematical Sciences Research Institute Publications, vol. 49, pp. 243–270. Cambridge University Press, Cambridge (2004)

  21. Kudla, S., Rapoport, M.: Special cycles on unitary Shimura varieties I. Unramified local theory. Invent. Math. 184(3), 629–682 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kudla, S., Rapoport, M.: Special cycles on unitary Shimura varieties II. Global theory (preprint)

  23. Kudla, S., Rapoport, M., Yang, T.H.: On the derivative of an Eisenstein series of weight one. Int. Math. Res. Not. 7, 347–385 (1999)

    Article  MathSciNet  Google Scholar 

  24. Kudla, S., Rapoport, M., Yang, T.H.: Modular Forms and Special Cycles on Shimura Curves. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  25. Lan, K.W.: Arithmetic Compacitifactions of PEL-Type Shimura Varieties. London Mathematical Society Monographs, vol. 36. Princeton University Press, Princeton (2013)

  26. Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  27. Nekovář, J.: On the \(p\)-adic height of Heegner cycles. Math. Ann. 302, 609–686 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pappas, G.: On the arithmetic moduli schemes of PEL Shimura varieties. J. Algebr. Geom. 9(3), 577–605 (2000)

    MATH  MathSciNet  Google Scholar 

  29. Scheithauer, N.R.: Some constructions of modular forms for the Weil representation of \({{\rm SL}_2}(\mathbb{Z})\) (2011, preprint)

  30. Schofer, J.P.: Borcherds forms and generalizations of singular moduli. J. Reine Angew. Math. 629, 1–36 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Serre, J.P.: A Course in Arithmetic. Graduate Texts in Mathematics, vol. 7. Springer, New York (1973)

  32. Serre, J.P.: Local Algebra. Springer Monographs in Mathematics. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  33. Soulé, C., Abramovich, D., Burnol, J.-F., Kramer, J.: Lectures on Arakelov Geometry. Cambridge Studies in Advanced Mathematics, vol. 33. Cambridge University Press, Cambridge (1992)

  34. Vistoli, A.: Intersection theory on algebraic stacks and on their moduli spaces. Invent. Math. 97(3), 613–670 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  35. Voisin, C.: Hodge Theory and Complex Algebraic Geometry I. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  36. Yang, T.H.: Chowla-Selberg formula and Colmez’s conjecture. Can. J. Math. 132, 456–472 (2010)

    Article  Google Scholar 

  37. Zhang, S.: Heights of Heegner cycles and derivatives of \(L\)-series. Invent. Math. 130, 99–152 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the referee for his/her careful reading of our manuscript and for the insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hendrik Bruinier.

Additional information

J. H. Bruinier is partially supported by DFG Grant BR-2163/4-1. B. Howard is partially supported by NSF Grant DMS-1201480. T. Yang is partially supported by a NSF Grant DMS-1200380 and a Chinese grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruinier, J.H., Howard, B. & Yang, T. Heights of Kudla–Rapoport divisors and derivatives of \(L\)-functions. Invent. math. 201, 1–95 (2015). https://doi.org/10.1007/s00222-014-0545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0545-9

Mathematics Subject Classification

Navigation