Skip to main content
Log in

Bifurcations in the space of exponential maps

  • Published:
Inventiones mathematicae Aims and scope

Abstract

This article investigates the parameter space of the exponential family \(\textit{z}\mapsto\exp(\textit{z})+\kappa\). We prove that the boundary (in ℂ) of every hyperbolic component is a Jordan arc, as conjectured by Eremenko and Lyubich as well as Baker and Rippon. In fact, we prove the stronger statement that the exponential bifurcation locus is connected in ℂ, an analog of Douady and Hubbard’s celebrated theorem that the Mandelbrot set is connected. We show furthermore that ∞ is not accessible through any nonhyperbolic (“queer”) stable component. The main part of the argument consists of demonstrating a general “Squeezing Lemma”, which controls the structure of parameter space near infinity. We also prove a second conjecture of Eremenko and Lyubich concerning bifurcation trees of hyperbolic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avila, A., Lyubich, M.Y.: Hausdorff dimension and conformal measures of Feigenbaum Julia sets. J. Am. Math. Soc. 21(2), 305–363 (2008). arXiv:math.DS/0408290

    Google Scholar 

  2. Baker, I.N., Rippon, P.J.: Iteration of exponential functions. Ann. Acad. Sci. Fenn., Ser. A I, Math. 9, 49–77 (1984)

    MATH  MathSciNet  Google Scholar 

  3. Bhattacharjee, R., Devaney, R.L.: Tying hairs for structurally stable exponentials. Ergodic Theory Dyn. Syst. 20(6), 1603–1617 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodelón, C., Devaney, R.L., Hayes, M., Roberts, G., Goldberg, L.R., Hubbard, J.H.: Hairs for the complex exponential family. Int. J. Bifurcation Chaos Appl. Sci. Eng. 9(8), 1517–1534 (1999)

    Article  Google Scholar 

  5. Bodelón, C., Devaney, R.L., Hayes, M., Roberts, G., Goldberg, L.R., Hubbard, J.H.: Dynamical convergence of polynomials to the exponential. J. Difference Equ. Appl. 6(3), 275–307 (2000)

    Article  MATH  Google Scholar 

  6. Devaney, R.L.: Julia sets and bifurcation diagrams for exponential maps. Bull. Am. Math. Soc., New Ser. 11(1), 167–171 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Devaney, R.L., Fagella, N., Jarque, X.: Hyperbolic components of the complex exponential family. Fundam. Math. 174(3), 193–215 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Devaney, R.L., Goldberg, L.R., Hubbard, J.H.: A dynamical approximation to the exponential map by polynomials. Preprint, MSRI Berkeley, 1986, published as [BDG1, BDG2]

  9. Douady, A., Hubbard, J.: Etude dynamique des polynômes complexes. Prépublications mathémathiques d’Orsay, 2/4 (1984/1985)

  10. Eremenko, A.È.: On the iteration of entire functions. In: Dynamical Systems and Ergodic Theory (Warsaw, 1986). Banach Cent. Publ., vol. 23, pp. 339–345. PWN, Warsaw (1989)

    Google Scholar 

  11. Eremenko, A.È., Lyubich, M.Y.: Iterates of entire functions. Preprint, Physico-Technical Institute of Low-Temperature Physics Kharkov, (1984). (Translation in Stony Brook IMS Preprint #1999/04)

  12. Eremenko, A.È., Lyubich, M.Y.: Dynamical properties of some classes of entire functions. Ann. Inst. Fourier (Grenoble) 42(4), 989–1020 (1992)

    MathSciNet  Google Scholar 

  13. Förster, M.: Parameter rays for the exponential family. Diplomarbeit, Techn. Univ. München (2003). (Available as Thesis 2003-03 on the Stony Brook Thesis Server)

  14. Förster, M., Rempe, L., Schleicher, D.: Classification of escaping exponential maps. Proc. Am. Math. Soc. 136, 651–663 (2008)

    Article  MATH  Google Scholar 

  15. Förster, M., Schleicher, D.: Parameter rays for the exponential family. Preprint (2005). arXiv:math.DS/0505097. (To appear in Ergodic Theory Dyn. Syst.)

  16. Graczyk, J., Kotus, J., Świątek, G.: Non-recurrent meromorphic functions. Fundam. Math. 182(3), 269–281 (2004)

    Article  MATH  Google Scholar 

  17. Krantz, S.G.: Function Theory of Several Complex Variables. John Wiley & Sons Inc., New York (1982)

    MATH  Google Scholar 

  18. McMullen, C.T.: Complex dynamics and renormalization. Ann. Math. Stud., vol. 135. Princeton University Press, Princeton, NJ (1994)

    Google Scholar 

  19. Milnor, J.: Dynamics in one complex variable, 3rd edn. Ann. Math. Stud., vol. 160. Princeton University Press, Princeton, NJ (2006)

    MATH  Google Scholar 

  20. Milnor, J.: On rational maps with two critical points. Exp. Math. 9(4), 481–522 (2000). arXiv:math.DS/9709226

    Google Scholar 

  21. Milnor, J.: Periodic orbits, externals rays and the Mandelbrot set: an expository account. In: Géométrie complexe et systèmes dynamiques (Orsay, 1995). Astérisque, vol. 261, pp. 277–333. Société Mathématique de France, Paris (2000). arXiv:math.DS/9905169

  22. Rempe, L.: A landing theorem for periodic rays of exponential maps. Proc. Am. Math. Soc. 134(9), 2639–2648 (2006). arXiv:math.DS/0307371

    Google Scholar 

  23. Rempe, L.: Topological dynamics of exponential maps on their escaping sets. Ergodic Theory Dyn. Syst. 26(6), 1939–1975 (2006). arXiv:math.DS/0309107

    Google Scholar 

  24. Rempe, L., Schleicher, D.: Combinatorics of bifurcations in exponential parameter space. In: Rippon, P., Stallard, G. (eds.) Transcendental Dynamics and Complex Analysis. Lond. Math. Soc. Lect. Note Ser., vol. 348, pp. 317–370. Cambridge Univ. Press (2008). arXiv:math.DS/0408011

  25. Rempe, L., Schleicher, D.: Bifurcation loci of exponential maps and quadratic polynomials: Local connectivity, triviality of fibers, and density of hyperbolicity. In: Lyubich, M.Y., Yampolsky, M. (eds.) Holomorphic Dynamics and Renormalization: A Volume in Honour of John Milnor’s 75th Birthday. Fields Institute Communications, vol. 53. To appear (2008)

  26. Schleicher, D.: On the dynamics of iterated exponential maps. Habilitation thesis, TU München (1999)

  27. Schleicher, D.: Attracting dynamics of exponential maps. Ann. Acad. Sci. Fenn., Math. 28, 3–34 (2003)

    MATH  MathSciNet  Google Scholar 

  28. Schleicher, D.: Hyperbolic components in exponential parameter space. C. R., Math., Acad. Sci. Paris 339(3), 223–228 (2004)

    MATH  MathSciNet  Google Scholar 

  29. Schleicher, D.: On fibers and local connectivity of Mandelbrot and Multibrot sets. In: Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot. Part 1. Proc. Symp. Pure Math., vol. 72, pp. 477–517. Am. Math. Soc., Providence, RI (2004)

    Google Scholar 

  30. Schleicher, D.: Internal addresses in the Mandelbrot set and irreducibility of polynomials. Preprint (2007). arXiv:math.DS/9411238v2. Updated version of Stony Brook IMS Preprint #1994/19

  31. Schleicher, D., Zimmer, J.: Escaping points of exponential maps. J. Lond. Math. Soc., II Ser. 67(2), 380–400 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Schleicher, D., Zimmer, J.: Periodic points and dynamic rays of exponential maps. Ann. Acad. Sci. Fenn., Math. 28, 327–354 (2003)

    MATH  MathSciNet  Google Scholar 

  33. Shishikura, M.: The boundary of the Mandelbrot set has Hausdorff dimension two. In: Complex Analytic Methods in Dynamical Systems (Rio de Janeiro, 1992). Astérisque, vol. 222, pp. 389–405. Société Mathématique de France, Paris (1994)

    Google Scholar 

  34. Urbański, M., Zdunik, A.: The finer geometry and dynamics of the hyperbolic exponential family. Mich. Math. J. 51(2), 227–250 (2003)

    Article  MATH  Google Scholar 

  35. Urbański, M., Zdunik, A.: Instability of exponential Collet–Eckmann maps. Isr. J. Math. 161, 347–371 (2007)

    Article  MATH  Google Scholar 

  36. Whyburn, G.T.: Analytic Topology. Am. Math. Soc. Coll. Publ., vol. 28. Am. Math. Soc., New York (1942)

  37. Ye, Z.: Structural instability of exponential functions. Trans. Am. Math. Soc. 344(1), 379–389 (1994)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dierk Schleicher.

Additional information

Mathematics Subject Classification (2000)

Primary 37F10, Secondary 30D05, 37F45

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rempe, L., Schleicher, D. Bifurcations in the space of exponential maps . Invent. math. 175, 103–135 (2009). https://doi.org/10.1007/s00222-008-0147-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-008-0147-5

Keywords

Navigation