Skip to main content
Log in

The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels

  • Published:
Inventiones mathematicae Aims and scope

Abstract

The present work establishes a Navier–Stokes limit for the Boltzmann equation considered over the infinite spatial domain R 3. Appropriately scaled families of DiPerna-Lions renormalized solutions are shown to have fluctuations whose limit points (in the w-L 1 topology) are governed by Leray solutions of the limiting Navier–Stokes equations. This completes the arguments in Bardos-Golse-Levermore [Commun. Pure Appl. Math. 46(5), 667–753 (1993)] for the steady case, and in Lions-Masmoudi [Arch. Ration. Mech. Anal. 158(3), 173–193 (2001)] for the time-dependent case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agoshkov, V.: Space of functions with differential difference characteristics and smoothness of solutions of the transport equation. Dokl. Akad. Nauk SSSR 276, 1289–1293 (1984)

    MathSciNet  Google Scholar 

  2. Arkeryd, L., Nouri, A.: A compactness result related to the stationary Boltzmann equation in a slab with applications to the existence theory. Indiana Univ. Math. J. 44, 815–839 (1995)

    Article  MathSciNet  Google Scholar 

  3. Asano, K.: Conference at the 4th International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics. Kyoto 1991

  4. Bardos, C., Degond, P.: Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré, Anal. Non Linéaire 2, 101–118 (1985)

    Article  MathSciNet  Google Scholar 

  5. Bardos, C., Golse, F., Levermore, D.: Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles. C. R. Acad. Sci., Paris 309, 727–732 (1989)

    Google Scholar 

  6. Bardos, C., Golse, F., Levermore, D.: Fluid Dynamic Limits of Kinetic Equations I: Formal Derivations. J. Stat. Phys. 63, 323–344 (1991)

    Article  Google Scholar 

  7. Bardos, C., Golse, F., Levermore, C.D.: Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation. Commun. Pure Appl. Math. 46, 667–753 (1993)

    Article  Google Scholar 

  8. Bardos, C., Golse, F., Levermore, C.D.: Acoustic and Stokes Limits for the Boltzmann Equation. C. R. Acad. Sci., Paris 327, 323–328 (1999)

    Article  MathSciNet  Google Scholar 

  9. Bardos, C., Golse, F., Levermore, C.D.: The Acoustic Limit for the Boltzmann Equation. Arch. Ration. Mech. Anal. 153, 177–204 (2000)

    Article  MathSciNet  Google Scholar 

  10. Bardos, C., Levermore, C.D.: Kinetic Equations and an Incompressible Fluid Dynamical Limit that Recovers Viscous Heating. In preparation (2003)

  11. Bardos, C., Ukai, S.: The Classical Incompressible Navier–Stokes Limit of the Boltzmann Equation. Math. Models Methods Appl. Sci. 1, 235–257 (1991)

    Article  MathSciNet  Google Scholar 

  12. Lagha-Benabdallah, A.: Limites des équations d’un fluide compressible lorsque la compressibilité tend vers zéro. (French) Fluid dynamics (Varenna, 1982), 139–165. Lecture Notes Math. 1047. Berlin: Springer 1984

    Article  MathSciNet  Google Scholar 

  13. Bouchut, F.: Hypoelliptic regularity in kinetic equations. J. Math. Pures Appl. 9, 313–327 (2002)

    Google Scholar 

  14. Bouchut, F., Desvillettes, L.: A proof of the smoothing properties of the positive part of Boltzmann’s kernel. Rev. Mat. Iberoam. 14, 47–61 (1998)

    Article  MathSciNet  Google Scholar 

  15. Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory, ed. by B. Perthame, L. Desvillettes, Series in Applied Mathematics 4. Paris: Gauthier-Villars 2000

  16. Caflisch, R.: The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous. Commun. Math. Phys. 74, 71–95 (1980)

    Article  Google Scholar 

  17. Castella, F., Perthame, B.: Estimations de Strichartz pour les équations de transport cinétique. C. R. Acad. Sci., Paris, Sér. I, Math. 322, 535–540 (1996)

    MathSciNet  Google Scholar 

  18. Cercignani, C.: Mathematical Methods in Kinetic Theory. New York: Plenum Press 1990

  19. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. New York: Springer 1994

  20. Constantin, P., Foias, C.: Navier–Stokes Equations. Chicago Lectures in Mathematics. Chicago: The University of Chicago Press 1988

  21. DeMasi, A., Esposito, R., Lebowitz, J.: Incompressible Navier–Stokes and Euler Limits of the Boltzmann Equation. Commun. Pure Appl. Math. 42, 1189–1214 (1990)

    Article  Google Scholar 

  22. Desvillettes, L., Golse, F.: On a model Boltzmann equation without angular cutoff. Differ. Integral Equ. 13, 567–594 (2000)

    MathSciNet  Google Scholar 

  23. DiPerna, R.J., Lions, P.-L.: On the Cauchy Problem for the Boltzmann Equation: Global Existence and Weak Stability Results. Ann. Math. 130, 321–366 (1990)

    Article  Google Scholar 

  24. Dunford, N., Pettis, B.J.: Linear Operations on Summable Functions. Trans. Am. Math. Soc. 47, 323–392 (1940)

    Article  Google Scholar 

  25. Golse, F., Levermore, C.D.: The Stokes-Fourier and Acoustic Limits for the Boltzmann Equation. Commun. Pure Appl. Math. 55, 336–393 (2002)

    Article  Google Scholar 

  26. Golse, F., Levermore, C.D., Saint-Raymond, L.: La méthode de l’entropie relative pour les limites hydrodynamiques de modèles cinétiques. Séminaire: Equations aux Dérivées Partielles, 1999–2000, Exp. No. XIX, 23 pp., Ecole Polytech., Palaiseau 2000

  27. Golse, F., Lions, P.-L., Perthame, B., Sentis, R.: Regularity of the Moments of the Solution of a Transport Equation. J. Funct. Anal. 76, 110–125 (1988)

    Article  MathSciNet  Google Scholar 

  28. Golse, F., Perthame, B., Sentis, R.: Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale de l’opérateur de transport. C. R. Acad. Sci., Paris 301, 341–344 (1985)

    Google Scholar 

  29. Golse, F., Saint-Raymond, L.: The Navier–Stokes limit for the Boltzmann equation. C. R. Acad. Sci., Paris 333, 897–902 (2001)

    Article  Google Scholar 

  30. Golse, F., Saint-Raymond, L.: Velocity averaging in L 1 for the transport equation. C. R. Acad. Sci., Paris 334, 557–562 (2002)

    Article  Google Scholar 

  31. Golse, F., Saint-Raymond, L.: Work in preparation

  32. Grad, H.: Asymptotic theory of the Boltzmann equation. II. 1963 Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962), Vol. I, pp. 26–59

  33. Grenier, E.: Fluides en rotation et ondes d’inertie. C. R. Acad. Sci., Paris 321, 711–714 (1995)

    MathSciNet  Google Scholar 

  34. Grothendieck, A.: Topological vector spaces. New York: Gordon Breach 1973

  35. Hilbert, D.: Mathematical Problems. International Congress of Mathematicians, Paris 1900. Translated and reprinted in Bull. Am. Math. Soc. 37, 407–436 (2000)

    Article  Google Scholar 

  36. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)

    Article  Google Scholar 

  37. Lachowicz, M.: On the initial layer and the existence theorem for the nonlinear Boltzmann equation. Math. Methods Appl. Sci. 9, 342–366 (1987)

    Article  MathSciNet  Google Scholar 

  38. Landau, L., Lifshitz, E.: Course of theoretical physics. Vol. 6. Fluid mechanics. Oxford: Pergamon Press 1987

  39. Lanford, O.: Time evolution of large classical systems. In: “Dynamical systems, theory and applications” (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), pp. 1–111. Lecture Notes Phys. 38. Berlin: Springer 1975

  40. Leray, J.: Sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  41. Levermore, C.D., Masmoudi, N.: From the Boltzmann Equation to an Incompressible Navier–Stokes–Fourier System. Work in preparation

  42. Lions, J.-L.: Théorèmes de trace et d’interpolation I, II. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 13, 389–403 (1959); 14, 317–331 (1960)

    Google Scholar 

  43. Lions, P.-L.: Conditions at infinity for Boltzmann’s equation. Commun. Partial. Differ. Equations 19, 335–367 (1994)

    Article  Google Scholar 

  44. Lions, P.-L.: Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models. Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications. New York: The Clarendon Press, Oxford University Press 1996

  45. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications I. J. Math. Kyoto Univ. 34, 391–427 (1994)

    Article  MathSciNet  Google Scholar 

  46. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications II. J. Math. Kyoto Univ. 34, 429–461 (1994)

    Article  Google Scholar 

  47. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications III. J. Math. Kyoto Univ. 34, 539–584 (1994)

    Article  MathSciNet  Google Scholar 

  48. Lions, P.-L.: On Boltzmann and Landau equations. Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 346, 191–204 (1994)

    Article  Google Scholar 

  49. Lions, P.-L., Masmoudi, N.: Une approche locale de la limite incompressible. (French) C. R. Acad. Sci., Paris, Sér. I, Math. 329, 387–392 (1999)

    Article  Google Scholar 

  50. Lions, P.-L., Masmoudi, N.: From Boltzmann Equations to Navier–Stokes Equations I. Arch. Ration. Mech. Anal. 158, 173–193 (2001)

    Article  MathSciNet  Google Scholar 

  51. Lions, P.-L., Masmoudi, N.: From Boltzmann Equations to the Stokes and Euler Equations II. Arch. Ration. Mech. Anal. 158, 195–211 (2001)

    Article  Google Scholar 

  52. Masmoudi, N., Saint-Raymond, L.: From the Boltzmann equation to the Stokes-Fourier system in a bounded domain. To appear in Commun. Pure Appl. Math.

  53. Perthame, B.: Global Existence to the BGK Model of the Boltzmann Equation. J. Differ. Equations 82, 191–205 (1989)

    Article  MathSciNet  Google Scholar 

  54. Quastel, J., Yau, H.-T.: Lattice gases, large deviations, and the incompressible Navier–Stokes equations. Ann. Math. (2) 148, 51–108 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  55. Saint-Raymond, L.: Discrete time Navier–Stokes limit for the BGK Boltzmann equation. Commun. Partial Differ. Equations 27, 149–184 (2002)

    Article  Google Scholar 

  56. Saint-Raymond, L.: From the Boltzmann BGK Equation to the Navier–Stokes System. Ann. Sci. Éc. Norm. Supér., IV. Sér. 36, 271–317 (2003)

    Google Scholar 

  57. Schochet, S.: Fast singular limits of hyperbolic PDEs. J. Differ. Equations 114, 476–512 (1994)

    Article  Google Scholar 

  58. Simon, J.: Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl., IV. Ser. 146, 65–96 (1987)

    Article  Google Scholar 

  59. Sone, Y.: Asymptotic Theory of Flow of a Rarefied Gas over a Smooth Boundary II. In: Rarefied Gas Dynamics. Vol. II, pp. 737–749, ed. by D. Dini. Pisa: Editrice Tecnico Scientifica 1971

  60. Sone, Y.: Kinetic Theory and Fluid Mechanics. Boston: Birkhäuser 2002

  61. Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203, 667–706 (1999)

    Article  MathSciNet  Google Scholar 

  62. Villani, C.: Limites hydrodynamiques de l’équation de Boltzmann [d’après C. Bardos, F. Golse, D. Levermore, Lions, P.-L., N. Masmoudi, L. Saint-Raymond]. Séminaire Bourbaki, vol. 2000–2001, Exp. 893

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to François Golse or Laure Saint-Raymond.

Additional information

Mathematics Subject Classification (2000)

35Q35, 35Q30, 82C40

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golse, F., Saint-Raymond, L. The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. math. 155, 81–161 (2004). https://doi.org/10.1007/s00222-003-0316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-003-0316-5

Keywords

Navigation