Skip to main content
Log in

Grasp: combined contribution of object properties and task constraints on hand and finger posture

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We compared the effect of different object properties on human upper-limb posture during reach-to-grasp tasks. A combination of extrinsic (object position), intrinsic (object type) and contextual object properties (grasp type) was investigated. Three-dimensional reach posture was measured by the hand position and orientation relative to the object at the time of stable object contact (with the digits). Similarly, the grasp posture was quantified by the angular digit configuration at the time of stationary object contact. We found that hand position and hand orientation were not only dependent on object position, as previously hypothesized, but also on object type and grasp type. Similarly, angular digit configuration was also dependent on extrinsic and contextual properties, and not only on object type (the intrinsic property). Principal component analysis revealed that two principal components (PCs) explained >79 % of the variation in the reach posture, whereas four PCs explained >76 % of the variation of the grasp posture. Again, PCs represented combinations of the input variables, i.e., there was no clear separation between the extrinsic variable acting specifically on the reach component, and the intrinsic variable on the grasp component. Contrary to the Dual Visuomotor Channel theory, these results suggest that extrinsic, intrinsic and contextual object variables do not act separately and exclusively on the neural control of the reach component or on that of the grasp component, but interact on both.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Fa,b = x. x = F value, where a = number of observations-1 and b = DoF(factor).

  2. If F,b (a omitted): the previous value of a applies.

References

  • Ansuini C, Santello M, Massaccesi S, Castiello U (2006) Effects of end-goal on hand shaping. J Neurophysiol 95(4):2456–2465

    Article  PubMed  Google Scholar 

  • Baumann MA, Fluet MC, Scherberger H (2009) Context-specific grasp movement representation in the macaque anterior intraparietal area. J Neurosci 29:6436–6448

    Article  PubMed  CAS  Google Scholar 

  • Biess A, Liebermann DG, Flash T (2007) A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics. J Neurosci 27:13045–13064

    Article  PubMed  CAS  Google Scholar 

  • Bootsma RJ, Marteniuk RG, MacKenzie CL, Zaal Frank TJM (1994) The speed-accuracy trade-off in manual prehension: effects of movement amplitude, object size and object width on kinematic characteristics. Exp Brain Res 98(3):535–541

    Article  PubMed  CAS  Google Scholar 

  • Castiello U (2005) The neuroscience of grasping. Nat Rev Neurosci 6(9):726–736

    Article  PubMed  CAS  Google Scholar 

  • Cesari P, Newell K (1999) The scaling of human grip configurations. J Exp Psychol Hum Percept Perform 25(4):927–935

    Article  PubMed  CAS  Google Scholar 

  • Chieffi S, Gentilucci M (1993) Coordination between the transport and the grasp components during prehension movements. Exp Brain Res 94:471–477

    Article  PubMed  CAS  Google Scholar 

  • Cuijpers RH, Smeets JBJ, Brenner E (2004) On the relation between object shape and grasping kinematics. J Neurophysiol 91(6):2598–2606

    Article  PubMed  Google Scholar 

  • Cutkosky MR, Howe RD (1990) Human grasp choice and robotic grasp analysis. Dextrous robot hands. Springer, Berlin, pp 5–31

    Book  Google Scholar 

  • Davare M, Andres M, Cosnard G, Thonnard JL, Olivier E (2006) Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci 26:2260–2268

    Article  PubMed  Google Scholar 

  • Davare M, Kraskov A, Rothwell JC, Lemon RN (2011) Interactions between areas of the cortical grasping network. Curr Opin Neurobiol 21(4):565–570

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Desmurget M, Prablanc C, Arzi M, Rossetti Y, Paulignan Y, Urquizar C (1996) Integrated control of hand transport and orientation during prehension movements. Exp Brain Res 110(2):265–278

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Grea H, Prablanc C (1998) Final posture of the upper limb depends on the initial position of the hand during prehension movements. Exp Brain Res 119(4):511–516

    Article  PubMed  CAS  Google Scholar 

  • Fattori P, Raos V, Breveglieri R, Bosco A, Marzocchi N, Galletti C (2010) The dorsomedial pathway is not just for reaching: grasping neurons in the medial parieto-occipital cortex of the macaque monkey. J Neurosci 30:342–349

    Article  PubMed  CAS  Google Scholar 

  • Fisk JD, Goodale MA (1990) The effect of instructions to subjects on the programming of visually directed reaching movements. J Mot Behav 21:5–19

    Article  Google Scholar 

  • Friedman J, Flash T (2007) Task-dependent selection of grasp kinematics and stiffness in human object manipulation. Cortex 43:444–460

    Article  PubMed  Google Scholar 

  • Gentilucci M, Castiello U, Corradini ML, Scarpa M, Umilt AC, Rizzolatti G (1991) Influence of different types of grasping on the transport component of prehension movements. Neuropsychologia 5:361–378

    Article  Google Scholar 

  • Gentilucci M, Daprati E, Gangitano M, Saetti MC, Toni I (1996) On orienting the hand to reach and grasp an object. NeuroReport 7(2):589–592

    Article  PubMed  CAS  Google Scholar 

  • Grafton ST (2010) The cognitive neuroscience of prehension: recent developments. Exp Brain Res 204(4):475–491

    Article  PubMed  PubMed Central  Google Scholar 

  • Grea H, Desmurget M, Prablanc C (2000) Postural invariance in three-dimensional reaching and grasping movements. Exp Brain Res 134:155–162

    Article  PubMed  CAS  Google Scholar 

  • Grinyagin IV, Biryukova EV, Maier MA (2005) Kinematic and dynamic synergies of human precision-grip movements. J Neurophysiol 94(4):2284–2294

    Article  PubMed  CAS  Google Scholar 

  • Guigon E, Baraduc P, Desmurget M (2007) Computational motor control: redundancy and invariance. J Neurophysiol 97:331–347

    Article  PubMed  Google Scholar 

  • Iberall T, MacKenzie CL (1990) Opposition space and human prehension. Dextrous robot hands. Springer, Berlin, pp 32–54

    Book  Google Scholar 

  • Jakobson L, Goodale M (1991) Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Exp Brain Res 86(1):199–208

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. In: Long J, Baddeley A (eds) Attention and performance IX, Hillsdale (NJ), Lawrence Erlbaum, pp 153–169

  • Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16(3):235–254

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M (1988) The neural and behavioural organization of goal-directed movements. Clarendon Press, Oxford

    Google Scholar 

  • Lacquaniti F, Soechting JF (1982) Coordination of arm and wrist motion during a reaching task. J Neurosci 2:399–408

    PubMed  CAS  Google Scholar 

  • Mamassian P (1997) Prehension of objects oriented in three-dimensional space. Exp Brain Res 114(2):235–245

    Article  PubMed  CAS  Google Scholar 

  • Marotta JJ, Medendorp WP, Crawford JD (2003) Kinematic rules for upper and lower arm contributions to grasp orientation. J Neurophysiol 90:3816–3827

    Article  PubMed  CAS  Google Scholar 

  • Mason C, Gomez J, Ebner T (2001) Hand synergies during reach-to-grasp. J Neurophysiol 86(6):2896–2910

    PubMed  CAS  Google Scholar 

  • Napier JR (1956) The prehensile movements of the human hand. J Bone Surg 38B:902–913

    Google Scholar 

  • Paulignan Y, Jeannerod M, Mackenzie C, Marteniuk R (1991) Selective perturbation of visual input during prehension movements. II. The effects of changing object size. Exp Brain Res 87:407–420

    Article  PubMed  CAS  Google Scholar 

  • Paulignan Y, Frak V, Toni I, Jeannerod M (1997) Influence of object position and size on human prehension movements. Exp Brain Res 114(2):226–234

    Article  PubMed  CAS  Google Scholar 

  • Raos V, Umiltá MA, Murata A, Fogassi L, Gallese V (2006) Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J Neurophysiol 95(2):709–729

    Article  PubMed  Google Scholar 

  • Roby-Brami A, Bennis N, Mokthtari M, Barraduc P (2000) Hand Orientation for grasping depends on the direction of the reaching movement. Brain Res 869:121–129

    Article  PubMed  CAS  Google Scholar 

  • Roby-Brami A, Jacobs S, Bennis N, Levin MF (2003) Hand orientation for grasping and arm joint rotation patterns in healthy subjects and hemiparetic stroke patients. Brain Res 969:217–229

    Article  PubMed  CAS  Google Scholar 

  • Santello M, Soechting JF (1998) Gradual molding of the hand to object contours. J Neurophysiol 79:1307–1320

    PubMed  CAS  Google Scholar 

  • Santello M, Flanders M, Soechting JF (1998) Postural hand synergies for tool use. J Neurosci 18(23):10105–10115

    PubMed  CAS  Google Scholar 

  • Santello M, Flanders M, Soechting JF (2002) Patterns of hand motion during grasping and the influence of sensory guidance. J Neurosci 22(4):426–1435

    Google Scholar 

  • Schot WD, Brenner E, Smeets JBJ (2010) Posture of the arm when grasping spheres to place them elsewhere. Exp Brain Res 204(2):163–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Smeets JB, Brenner E (1999) A new view on grasping. Mot Control 3:237–271

    CAS  Google Scholar 

  • Torres EB, Zipser D (2004) Simultaneous control of hand displacements and rotations in orientation-matching experiments. J Appl Physiol 96:1978–1987

    Article  PubMed  Google Scholar 

  • Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8(4):505–511

    PubMed  CAS  Google Scholar 

  • Wang X (1999) Three-dimensional kinematic analysis of influence of hand orientation and joint limits on the control of arm postures and movements. Biol Cybern 80:449–463

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the French Agence Nationale pour la Recherche (ANR): Grant No. C08527 (ABILIS). The authors would like to thank Assoc. Prof. Anne Badel for her statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim Eskiizmirliler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touvet, F., Roby-Brami, A., Maier, M.A. et al. Grasp: combined contribution of object properties and task constraints on hand and finger posture. Exp Brain Res 232, 3055–3067 (2014). https://doi.org/10.1007/s00221-014-3990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3990-1

Keywords

Navigation