Skip to main content
Log in

Unilateral imagined movement increases interhemispheric inhibition from the contralateral to ipsilateral motor cortex

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Whether a cortical drive to one limb modulates interhemispheric inhibition (IHI) from the active targeting to the non-active motor cortex (M1) remained unclear. The present study using a conditioning-test transcranial magnetic stimulation (TMS) paradigm aimed to directly demonstrate the modulation of IHI during unilateral voluntary or imagined movement in humans. Subjects were asked to actually perform right index-finger abduction (10–70 % of the maximum voluntary contraction) or to imagine the movement. Conditioning and test TMS with an interstimulus interval of 5, 10, and 15 ms were applied over the left and right M1, respectively, and the test motor evoked potential (MEP) was recorded from the left first dorsal interosseous (FDI) muscle. The conditioning TMS intensity was adjusted ranging from 0.6 to 1.4 (in 0.2 steps) times the resting motor threshold (rMT). With test TMS alone, MEP in the left FDI muscle significantly increased during voluntary or imagined movement of the right index-finger. MEP amplitude was significantly reduced in proportion to increments of the conditioning TMS intensity at rest (1.2 and 1.4 times the rMT, P < 0.05, respectively). Importantly, the MEP inhibition was markedly enhanced during voluntary or imagined movement in comparison with that at rest. The regression analysis revealed that IHI varied depending on the intensity of the impulses conveyed from left to right M1, but not on the corticospinal excitability of the active right hand. Our results suggest that IHI from the active to non-active M1 is enhanced during unilateral volitional motor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Caldara R, Deiber MP, Andrey C, Michel CM, Thut G, Hauert CA (2004) Actual and mental motor preparation and execution: a spatiotemporal ERP study. Exp Brain Res 159:389–399

    Article  PubMed  Google Scholar 

  • Chen R, Gerloff C, Hallett M, Cohen LG (1997) Involvement of the ipsilateral motor cortex in finger movements of different complexities. Ann Neurol 41:247–254

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Yung D, Li JY (2003) Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol 89:1256–1264

    Article  PubMed  Google Scholar 

  • Daskalakis ZJ, Christensen BK, Fitzgerald PB, Roshan L, Chen R (2002) The mechanisms of interhemispheric inhibition in the human motor cortex. J Physiol (Lond) 543:317–326

    Article  CAS  Google Scholar 

  • Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol (Lond) 508:625–633

    Article  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (1999) Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Exp Brain Res 124:520–524

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Saturno E, Pilato F, Insola A, Mazzone P, Profice P, Tonali P, Rothwell JC (2001) The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. Exp Brain Res 138:268–273

    Article  PubMed  Google Scholar 

  • Donchin O, Gribova A, Steinberg O, Bergman H, Vaadia E (1998) Primary motor cortex is involved in bimanual coordination. Nature 395:274–278

    Article  CAS  PubMed  Google Scholar 

  • Donchin O, Gribova A, Steinberg O, Bergman H, Cardoso de Oliveira S, Vaadia E (2001) Local field potentials related to bimanual movements in the primary and supplementary motor cortices. Exp Brain Res 140:46–55

    Article  CAS  PubMed  Google Scholar 

  • Duque J, Mazzocchio R, Dambrosia J, Murase N, Olivier E, Cohen LG (2005) Kinematically specific interhemispheric inhibition operating in the process of generation of a voluntary movement. Cereb Cortex 15:588–593

    Article  CAS  PubMed  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol (Lond) 453:525–546

    CAS  Google Scholar 

  • Gerardin E, Sirigu A, Lehéricy S, Poline JB, Gaymard B, Marsault C, Agid Y, Le Bihan D (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Giovannelli F, Borgheresi A, Balestrieri F, Zaccara G, Viggiano MP, Cincotta M, Ziemann U (2009) Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study. J Physiol (Lond) 587:5393–5410

    Article  CAS  PubMed Central  Google Scholar 

  • Hadoush H, Inoue K, Nakanishi K, Kurumadani H, Sunagawa T, Ochi M (2010) Ipsilateral primary sensorimotor cortical response to mechanical tactile stimuli. NeuroReport 21:108–113

    Article  PubMed  Google Scholar 

  • Hanajima R, Ugawa Y, Machii K, Mochizuki H, Terao Y, Enomoto H, Furubayashi T, Shiio Y, Uesugi H, Kanazawa I (2001) Interhemispheric facilitation of the hand motor area in humans. J Physiol (Lond) 531:849–859

    Article  CAS  Google Scholar 

  • Hess CW, Mills KR, Murray NM (1986) Magnetic stimulation of the human brain: facilitation of motor responses by voluntary contraction of ipsilateral and contralateral muscles with additional observations on an amputee. Neurosci Lett 71:235–240

    Article  CAS  PubMed  Google Scholar 

  • Hinder MR, Schmidt MW, Garry MI, Summers JJ (2010) Unilateral contractions modulate interhemispheric inhibition most strongly and most adaptively in the homologous muscle of the contralateral limb. Exp Brain Res 205:423–433

    Article  PubMed  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Kaneko K, Kawai S, Fuchigami Y, Morita H, Ofuji A (1996) The effect of current direction induced by transcranial magnetic stimulation on the corticospinal excitability in human brain. Electroencephalogr Clin Neurophysiol 101:478–482

    Article  CAS  PubMed  Google Scholar 

  • Kasai T, Kawai S, Kawanishi M, Yahagi S (1997) Evidence for facilitation of motor evoked potentials (MEPs) induced by motor imagery. Brain Res 744:147–150

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Uğurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617

    Article  CAS  PubMed  Google Scholar 

  • Liang N, Hayashi S, Takahashi M, Ni Z, Yamashita T, Yahagi S, Shimura K, Kasai T (2006) Further insight into excitability changes of intracortical inhibitory (ICI) and facilitatory (ICF) circuits in human hand motor area during motor imagery. Adv Exerc Sports Physiol 12:45–50

    Google Scholar 

  • Liang N, Ni Z, Takahashi M, Murakami T, Yahagi S, Funase K, Kato T, Kasai T (2007) Effects of motor imagery are dependent on motor strategies. NeuroReport 18:1241–1245

    Article  PubMed  Google Scholar 

  • Liang N, Murakami T, Funase K, Narita T, Kasai T (2008) Further evidence for excitability changes in human primary motor cortex during ipsilateral voluntary contractions. Neurosci Lett 433:135–140

    Article  CAS  PubMed  Google Scholar 

  • Liang N, Funase K, Narita T, Takahashi M, Matsukawa K, Kasai T (2011) Effects of unilateral voluntary movement on motor imagery of the contralateral limb. Clin Neurophysiol 122:550–557

    Article  PubMed  Google Scholar 

  • Meyer BU, Röricht S, Gräfin von Einsiedel H, Kruggel F, Weindl A (1995) Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118:429–440

    Article  PubMed  Google Scholar 

  • Mochizuki H, Furubayashi T, Hanajima R, Terao Y, Mizuno Y, Okabe S, Ugawa Y (2007) Hemoglobin concentration changes in the contralateral hemisphere during and after theta burst stimulation of the human sensorimotor cortices. Exp Brain Res 180:667–675

    Article  CAS  PubMed  Google Scholar 

  • Morishita T, Ninomiya M, Uehara K, Funase K (2011) Increased excitability and reduced intracortical inhibition in the ipsilateral primary motor cortex during a fine-motor manipulation task. Brain Res 1371:65–73

    Article  CAS  PubMed  Google Scholar 

  • Morishita T, Uehara K, Funase K (2012) Changes in interhemispheric inhibition from active to resting primary motor cortex during a fine-motor manipulation task. J Neurophysiol 107:3086–3094

    Article  PubMed  Google Scholar 

  • Muellbacher W, Facchini S, Boroojerdi B, Hallett M (2000) Changes in motor cortex excitability during ipsilateral hand muscle activation in humans. Clin Neurophysiol 111:344–349

    Article  CAS  PubMed  Google Scholar 

  • Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55:400–409

    Article  PubMed  Google Scholar 

  • Nelson AJ, Hoque T, Gunraj C, Ni Z, Chen R (2009) Bi-directional interhemispheric inhibition during unimanual sustained contractions. BMC Neurosci 10:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Ni Z, Gunraj C, Nelson AJ, Yeh IJ, Castillo G, Hoque T, Chen R (2009) Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human. Cereb Cortex 19:1654–1665

    Article  PubMed  Google Scholar 

  • Ni Z, Charab S, Gunraj C, Nelson AJ, Udupa K, Yeh IJ, Chen R (2011a) Transcranial magnetic stimulation in different current directions activates separate cortical circuits. J Neurophysiol 105:749–756

    Article  PubMed  Google Scholar 

  • Ni Z, Gunraj C, Wagle-Shukla A, Udupa K, Mazzella F, Lozano AM, Chen R (2011b) Direct demonstration of inhibitory interactions between long interval intracortical inhibition and short interval intracortical inhibition. J Physiol (Lond) 589:2955–2962

    Article  CAS  Google Scholar 

  • Nozaki D, Kurtzer I, Scott SH (2006) Limited transfer of learning between unimanual and bimanual skills within the same limb. Nat Neurosci 9:1364–1366

    Article  CAS  PubMed  Google Scholar 

  • Oldfield R (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Perez MA, Cohen LG (2008) Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand. J Neurosci 28:5631–5640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ridding MC, Taylor JL, Rothwell JC (1995) The effect of voluntary contraction on corticocortical inhibition in human motor cortex. J Physiol (Lond) 487:541–548

    CAS  Google Scholar 

  • Sakai K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T, Kanazawa I (1997) Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil. Exp Brain Res 113:24–32

    Article  CAS  PubMed  Google Scholar 

  • Sattler V, Dickler M, Michaud M, Simonetta-Moreau M (2012) Interhemispheric inhibition in human wrist muscles. Exp Brain Res 221:449–458

    Article  CAS  PubMed  Google Scholar 

  • Stedman A, Davey NJ, Ellaway PH (1998) Facilitation of human first dorsal interosseous muscle responses to transcranial magnetic stimulation during voluntary contraction of the contralateral homonymous muscle. Muscle Nerve 21:1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Stinear CM, Byblow WD (2003) Motor imagery of phasic thumb abduction temporally and spatially modulates corticospinal excitability. Clin Neurophysiol 114:909–914

    Article  PubMed  Google Scholar 

  • Stinear CM, Byblow WD (2004) Modulation of corticospinal excitability and intracortical inhibition during motor imagery is task-dependent. Exp Brain Res 157:351–358

    Article  PubMed  Google Scholar 

  • Stinear CM, Walker KS, Byblow WD (2001) Symmetric facilitation between motor cortices during contraction of ipsilateral hand muscles. Exp Brain Res 139:101–105

    Article  CAS  PubMed  Google Scholar 

  • Swayne O, Rothwell J, Rosenkranz K (2006) Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand. Clin Neurophysiol 117:855–863

    Article  PubMed  Google Scholar 

  • Swinnen SP (2002) Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci 3:350–361

    Article  CAS  Google Scholar 

  • Takahashi M, Sugawara K, Hayashi S, Kasai T (2004) Excitability changes in human hand motor area dependent on afferent inputs induced by different motor tasks. Exp Brain Res 158:527–532

    Article  PubMed  Google Scholar 

  • Tinazzi M, Zanette G (1998) Modulation of ipsilateral motor cortex in man during unimanual finger movements of different complexities. Neurosci Lett 244:121–124

    Article  CAS  PubMed  Google Scholar 

  • Uehara K, Morishita T, Funase K (2011) Excitability changes in the ipsilateral primary motor cortex during rhythmic contraction of finger muscles. Neurosci Lett 488:22–25

    Article  CAS  PubMed  Google Scholar 

  • Uehara K, Morishita T, Kubota S, Funase K (2013) Neural mechanisms underlying the changes in ipsilateral primary motor cortex excitability during unilateral rhythmic muscle contraction. Behav Brain Res 240:33–45

    Article  PubMed  Google Scholar 

  • Ugawa Y, Hanajima R, Kanazawa I (1993) Interhemispheric facilitation of the hand area of the human motor cortex. Neurosci Lett 160:153–155

    Article  CAS  PubMed  Google Scholar 

  • Verstynen T, Diedrichsen J, Albert N, Aparicio P, Ivry RB (2005) Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. J Neurophysiol 93:1209–1222

    Article  PubMed  Google Scholar 

  • Yahagi S, Shimura K, Kasai T (1996) An increase in cortical excitability with no change in spinal excitability during motor imagery. Percept Mot Skills 83:288–290

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by a Research Projects Grant-in-Aid for Young Scientists, Japan (N.L.).

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, N., Funase, K., Takahashi, M. et al. Unilateral imagined movement increases interhemispheric inhibition from the contralateral to ipsilateral motor cortex. Exp Brain Res 232, 1823–1832 (2014). https://doi.org/10.1007/s00221-014-3874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3874-4

Keywords

Navigation