Skip to main content
Log in

Action semantics and movement characteristics engage distinct processing streams during the observation of tool use

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The cortical motor system follows a modular organization in which different features of executed movements are supported by distinct streams. Accordingly, different levels of action recognition, such as movement characteristics or action semantics may be processed within distinct networks. The present study aimed to differentiate areas related to the analysis of action features involving semantic knowledge from regions concerned with the evaluation of movement characteristics determined by structural object properties. To this end, the assessment of (i) tool-associated actions in relation to semantically, but not functionally inappropriate recipients (factor “Semantics”), and the evaluation of (ii) tool-associated movements performed with awkward versus correct hand postures (factor “Hand”) were experimentally manipulated in an fMRI study with an event-related 2 × 2 factorial design. The videos used as stimuli displayed actions performed with the right hand in third-person perspective. Conjunction analysis of all four experimental conditions showed that observing videos depicting tool-related actions compared to rest was associated with widespread bilateral activity within the frontal lobes, inferior and superior parietal lobules, parts of the temporal lobes, as well as the occipital lobes. Viewing actions executed with incorrect compared to correct hand postures (factor “Hand”) elicited significantly more activity within right primary sensory cortex (Brodmann area 2) and superior parietal lobule. Conversely, tool-associated actions displayed after semantically incorrect compared to correct recipients elicited higher activation within a left-lateralized network comprising the ventro-lateral prefrontal cortex (VLPFC), parts of the intraparietal sulcus and the angular gyrus (AG), as well as the supplementary motor area (SMA) and pre-SMA. Probabilistic diffusion tensor imaging-based tractography revealed two distinct fiber connections between AG and the frontal activation: A dorsal pathway via the superior longitudinal fascicle to the caudal part of VLPFC and a ventral pathway reaching the more rostral parts of VLPFC via the extreme capsule. The task-dependent relative modulation of activity within these brain networks composed of activated cortical areas connected by specific white matter tracts may indicate that the assessment of semantic action features relies on both dorso-ventral and ventral processing streams, whereas the analysis of hand postures with respect to objects depends on areas within the dorso-dorsal stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AG:

Angular gyrus

VLPFC:

Ventro-lateral prefrontal cortex

vPMC:

Ventral premotor cortex

IFGtri:

Inferior frontal gyrus pars triangularis

IFGorb:

Inferior frontal gyrus pars orbitalis

EC/EmC:

External/extreme capsule

SLF:

Superior longitudinal fascicle

IPS:

Intraparietal sulcus

SMA:

Supplementary motor area

DTI:

Diffusion tensor imaging

References

  • Andres M, Pelgrims B, Olivier E (2012) Distinct contribution of the parietal and temporal cortex to hand configuration and contextual judgements about tools. Cortex. doi:10.1016/j.cortex.2012.11.013

  • Badre D, Wagner AD (2007) Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45:2883–2901

    Article  PubMed  Google Scholar 

  • Badre D, Poldrack RA, Paré-Blagoev EJ, Insler RZ, Wagner AD (2005) Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron 47:907–918

    Article  PubMed  CAS  Google Scholar 

  • Bartolo A, Daumüller M, Della Sala S, Goldenberg G (2007) Relationship between object-related gestures and the fractionated object knowledge system. Behav Neurol 18:143–147

    PubMed  Google Scholar 

  • Battaglia-Mayer A, Caminiti R (2002) Optic ataxia as a result of the breakdown of the global tuning fields of parietal neurones. Brain 125:225–237

    Article  PubMed  Google Scholar 

  • Binkofski F, Buxbaum LJ (2012) Two action systems in the human brain. Brain Lang (in press)

  • Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund HJ (1998) Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study. Neurology 50:1253–1259

    Article  PubMed  CAS  Google Scholar 

  • Blangero A, Menz MM, McNamara A, Binkofski F (2009) Parietal modules for reaching. Neuropsychologia 47:1500–1507

    Article  PubMed  CAS  Google Scholar 

  • Bonini L, Rozzi S, Serventi FU, Simone L, Ferrari PF, Fogassi L (2010) Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. Cereb Cortex 20:1372–1385

    Article  PubMed  Google Scholar 

  • Brass M, Derrfuss J, Forstmann B, Cramon DY von (2005) The role of the inferior frontal junction area in cognitive control. Trends Cogn Sci (Regul Ed) 9:314–316

    Google Scholar 

  • Brass M, Schmitt RM, Spengler S, Gergely G (2007) Investigating action understanding: inferential processes versus action simulation. Curr Biol 17:2117–2121

    Article  PubMed  CAS  Google Scholar 

  • Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13:400–404

    PubMed  CAS  Google Scholar 

  • Buccino G, Baumgaertner A, Colle L, Buechel C, Rizzolatti G, Binkofski F (2007) The neural basis for understanding non-intended actions. Neuroimage 36(Suppl 2):T119–T127

    Article  PubMed  Google Scholar 

  • Bunge SA, Ochsner KN, Desmond JE, Glover GH, Gabrieli JD (2001) Prefrontal regions involved in keeping information in and out of mind. Brain 124:2074–2086

    Article  PubMed  CAS  Google Scholar 

  • Bunge SA, Wendelken C, Badre D, Wagner AD (2005) Analogical reasoning and prefrontal cortex: evidence for separable retrieval and integration mechanisms. Cereb Cortex 15:239–249

    Article  PubMed  Google Scholar 

  • Buxbaum LJ, Kalénine S (2010) Action knowledge, visuomotor activation, and embodiment in the two action systems. Ann N Y Acad Sci 1191:201–218

    Article  PubMed  Google Scholar 

  • Buxbaum LJ, Saffran EM (2002) Knowledge of object manipulation and object function: dissociations in apraxic and nonapraxic subjects. Brain Lang 82:179–199

    Article  PubMed  Google Scholar 

  • Buxbaum LJ, Veramonti T, Schwartz MF (2000) Function and manipulation tool knowledge in apraxia: knowing ‘what for’ but not ‘how’. Neurocase 6:83–97

    Google Scholar 

  • Buxbaum LJ, Kyle KM, Menon R (2005) On beyond mirror neurons: internal representations subserving imitation and recognition of skilled object-related actions in humans. Brain Res Cogn Brain Res 25:226–239

    Article  PubMed  Google Scholar 

  • Calvo-Merino B, Glaser DE, Grèzes J, Passingham RE, Haggard P (2005) Action observation and acquired motor skills: an FMRI study with expert dancers. Cereb Cortex 15:1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Calvo-Merino B, Grèzes J, Glaser DE, Passingham RE, Haggard P (2006) Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol 16:1905–1910

    Article  PubMed  CAS  Google Scholar 

  • Canessa N, Borgo F, Cappa SF, Perani D, Falini A, Buccino G, Tettamanti M, Shallice T (2008) The different neural correlates of action and functional knowledge in semantic memory: an FMRI study. Cereb Cortex 18:740–751

    Article  PubMed  Google Scholar 

  • Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) ALE meta-analysis of action observation and imitation in the human brain. Neuroimage 50:1148–1167

    Article  PubMed  Google Scholar 

  • Caspers S, Eickhoff SB, Rick T, von Kapri A, Kuhlen T, Huang R, Shah NJ, Zilles K (2011) Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. Neuroimage 58:362–380

    Article  PubMed  Google Scholar 

  • Catani M, Ffytche DH (2005) The rises and falls of disconnection syndromes. Brain 128:2224–2239

    Article  PubMed  Google Scholar 

  • Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94

    Article  PubMed  Google Scholar 

  • Cavina-Pratesi C, Monaco S, Fattori P, Galletti C, McAdam TD, Quinlan DJ, Goodale MA, Culham JC (2010) Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. J Neurosci 30:10306–10323

    Article  PubMed  CAS  Google Scholar 

  • Chao LL, Martin A (2000) Representation of manipulable man-made objects in the dorsal stream. Neuroimage 12:478–484

    Article  PubMed  CAS  Google Scholar 

  • Chersi F, Ferrari PF, Fogassi L (2011) Neuronal chains for actions in the parietal lobe: a computational model. PLoS ONE 6:e27652

    Article  PubMed  CAS  Google Scholar 

  • Costantini M, Galati G, Ferretti A, Caulo M, Tartaro A, Romani GL, Aglioti SM (2005) Neural systems underlying observation of humanly impossible movements: an FMRI study. Cereb Cortex 15:1761–1767

    Article  PubMed  Google Scholar 

  • Creem-Regehr SH, Lee JN (2005) Neural representations of graspable objects: are tools special? Brain Res Cogn Brain Res 22:457–469

    Article  PubMed  Google Scholar 

  • Creem-Regehr SH, Neil JA, Yeh HJ (2007) Neural correlates of two imagined egocentric transformations. Neuroimage 35:916–927

    Article  PubMed  Google Scholar 

  • Culham JC, Danckert SL, DeSouza JFX, Gati JS, Menon RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153:180–189

    Article  PubMed  Google Scholar 

  • Daprati E, Sirigu A (2006) How we interact with objects: learning from brain lesions. Trends Cogn Sci (Regul Ed) 10:265–270

    Google Scholar 

  • de Lange FP, Spronk M, Willems RM, Toni I, Bekkering H (2008) Complementary systems for understanding action intentions. Curr Biol 18:454–457

    Article  PubMed  CAS  Google Scholar 

  • de Vries MH, Barth ACR, Maiworm S, Knecht S, Zwitserlood P, Flöel A (2010) Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. J Cogn Neurosci 22:2427–2436

    Article  PubMed  Google Scholar 

  • Derrfuss J, Brass M, Neumann J, von Cramon DY (2005) Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp 25:22–34

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci 25:9919–9931

    Article  PubMed  CAS  Google Scholar 

  • Dovern A, Fink GR, Saliger J, Karbe H, Koch I, Weiss PH (2011) Apraxia impairs intentional retrieval of incidentally acquired motor knowledge. J Neurosci 31:8102–8108

    Article  PubMed  CAS  Google Scholar 

  • Dräger B, Jansen A, Bruchmann S, Förster AF, Pleger B, Zwitserlood P, Knecht S (2004) How does the brain accommodate to increased task difficulty in word finding? A functional MRI study. Neuroimage 23:1152–1160

    PubMed  Google Scholar 

  • Eickhoff SB, Paus T, Caspers S, Grosbras M, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36:511–521

    Article  PubMed  Google Scholar 

  • Fernandino L, Iacoboni M (2010) Are cortical motor maps based on body parts or coordinated actions? Implications for embodied semantics. Brain Lang 112:44–53

    Article  PubMed  Google Scholar 

  • Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308:662–667

    Article  PubMed  CAS  Google Scholar 

  • Fridman EA, Immisch I, Hanakawa T, Bohlhalter S, Waldvogel D, Kansaku K, Wheaton L, Wu T, Hallett M (2006) The role of the dorsal stream for gesture production. Neuroimage 29:417–428

    Article  PubMed  Google Scholar 

  • Friederici AD (2002) Towards a neural basis of auditory sentence processing. Trends Cogn Sci (Regul Ed) 6:78–84

    Google Scholar 

  • Friston KJ, Penny WD, Glaser DE (2005) Conjunction revisited. Neuroimage 25:661–667

    Article  PubMed  Google Scholar 

  • Gardner EP, Babu KS, Ghosh S, Sherwood A, Chen J (2007) Neurophysiology of prehension. III. Representation of object features in posterior parietal cortex of the macaque monkey. J Neurophysiol 98:3708–3730

    Article  PubMed  Google Scholar 

  • Gazzola V, Keysers C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex 19:1239–1255

    Article  PubMed  Google Scholar 

  • Gazzola V, Rizzolatti G, Wicker B, Keysers C (2007) The anthropomorphic brain: the mirror neuron system responds to human and robotic actions. Neuroimage 35:1674–1684

    Article  PubMed  CAS  Google Scholar 

  • Gold BT, Balota DA, Jones SJ, Powell DK, Smith CD, Andersen AH (2006) Dissociation of automatic and strategic lexical-semantics: functional magnetic resonance imaging evidence for differing roles of multiple frontotemporal regions. J Neurosci 26:6523–6532

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg G (2009) Apraxia and the parietal lobes. Neuropsychologia 47:1449–1459

    Article  PubMed  Google Scholar 

  • Goldenberg G, Spatt J (2009) The neural basis of tool use. Brain 132:1645–1655

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg G, Hartmann K, Schlott I (2003) Defective pantomime of object use in left brain damage: apraxia or asymbolia? Neuropsychologia 41:1565–1573

    Article  PubMed  Google Scholar 

  • Goldenberg G, Hermsdörfer J, Glindemann R, Rorden C, Karnath H (2007) Pantomime of tool use depends on integrity of left inferior frontal cortex. Cereb Cortex 17:2769–2776

    Article  PubMed  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  PubMed  CAS  Google Scholar 

  • Grefkes C, Ritzl A, Zilles K, Fink GR (2004) Human medial intraparietal cortex subserves visuomotor coordinate transformation. Neuroimage 23:1494–1506

    Article  PubMed  Google Scholar 

  • Grèzes J, Decety J (2002) Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia 40:212–222

    Article  PubMed  Google Scholar 

  • Hagura N, Takei T, Hirose S, Aramaki Y, Matsumura M, Sadato N, Naito E (2007) Activity in the posterior parietal cortex mediates visual dominance over kinesthesia. J Neurosci 27:7047–7053

    Article  PubMed  CAS  Google Scholar 

  • Hahne A, Friederici AD (2002) Differential task effects on semantic and syntactic processes as revealed by ERPs. Brain Res Cogn Brain Res 13:339–356

    Article  PubMed  Google Scholar 

  • Hamilton AFC, Grafton ST (2006) Goal representation in human anterior intraparietal sulcus. J Neurosci 26:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AFC, Grafton ST (2008) Action outcomes are represented in human inferior frontoparietal cortex. Cereb Cortex 18:1160–1168

    Article  PubMed  Google Scholar 

  • Hamzei F, Vry M, Saur D, Glauche V, Hoeren M, Mader I, Rijntjes M, Weiller C (2013) Connecting the ventral and dorsal visual streams with prefrontal regions related to the mirror neuron system: a functional MRI based diffusion tensor imaging. Submitted

  • Herrmann B, Obleser J, Kalberlah C, Haynes J, Friederici AD (2012) Dissociable neural imprints of perception and grammar in auditory functional imaging. Hum Brain Mapp 33:584–595

    Article  PubMed  Google Scholar 

  • Hesse MD, Sparing R, Fink GR (2009) End or means—the “what” and “how” of observed intentional actions. J Cogn Neurosci 21:776–790

    Article  PubMed  Google Scholar 

  • Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402

    Article  PubMed  CAS  Google Scholar 

  • Hodges JR, Spatt J, Patterson K (1999) “What” and “how”: evidence for the dissociation of object knowledge and mechanical problem-solving skills in the human brain. Proc Natl Acad Sci USA 96:9444–9448

    Article  PubMed  CAS  Google Scholar 

  • Hoenig K, Scheef L (2009) Neural correlates of semantic ambiguity processing during context verification. Neuroimage 45:1009–1019

    Article  PubMed  Google Scholar 

  • Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G (2005) Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol 3:e79

    Article  PubMed  CAS  Google Scholar 

  • Jastorff J, Begliomini C, Fabbri-Destro M, Rizzolatti G, Orban GA (2010) Coding observed motor acts: different organizational principles in the parietal and premotor cortex of humans. J Neurophysiol 104:128–140

    Article  PubMed  Google Scholar 

  • Johnson SH, Rotte M, Grafton ST, Hinrichs H, Gazzaniga MS, Heinze HJ (2002) Selective activation of a parietofrontal circuit during implicitly imagined prehension. Neuroimage 17:1693–1704

    Article  PubMed  CAS  Google Scholar 

  • Kalénine S, Buxbaum LJ, Coslett HB (2010) Critical brain regions for action recognition: lesion symptom mapping in left hemisphere stroke. Brain 133:3269–3280

    Article  PubMed  Google Scholar 

  • Klein ME, Zatorre RJ (2011) A role for the right superior temporal sulcus in categorical perception of musical chords. Neuropsychologia 49:878–887

    Article  PubMed  Google Scholar 

  • Koelsch S, Jentschke S (2008) Short-term effects of processing musical syntax: an ERP study. Brain Res 1212:55–62

    Article  PubMed  CAS  Google Scholar 

  • Koelsch S, Jentschke S, Sammler D, Mietchen D (2007) Untangling syntactic and sensory processing: an ERP study of music perception. Psychophysiology 44:476–490

    Article  PubMed  Google Scholar 

  • Kohler E, Keysers C, Umiltà MA, Fogassi L, Gallese V, Rizzolatti G (2002) Hearing sounds, understanding actions: action representation in mirror neurons. Science 297:846–848

    Article  PubMed  CAS  Google Scholar 

  • Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230

    Article  PubMed  CAS  Google Scholar 

  • Kreher BW, Schnell S, Mader I, Il’yasov KA, Hennig J, Kiselev VG, Saur D (2008) Connecting and merging fibres: pathway extraction by combining probability maps. Neuroimage 43:81–89

    Article  PubMed  CAS  Google Scholar 

  • Lacquaniti F, Guigon E, Bianchi L, Ferraina S, Caminiti R (1995) Representing spatial information for limb movement: role of area 5 in the monkey. Cereb Cortex 5:391–409

    Google Scholar 

  • Leiguarda RC, Marsden CD (2000) Limb apraxias: higher-order disorders of sensorimotor integration. Brain 123(Pt 5):860–879

    Article  PubMed  Google Scholar 

  • Lewis JW (2006) Cortical networks related to human use of tools. Neuroscientist 12:211–231

    Article  PubMed  Google Scholar 

  • Makris N, Meyer JW, Bates JF, Yeterian EH, Kennedy DN, Caviness VS (1999) MRI-Based topographic parcellation of human cerebral white matter and nuclei II. Rationale and applications with systematics of cerebral connectivity. Neuroimage 9:18–45

    Article  PubMed  CAS  Google Scholar 

  • Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo. DT-MRI study. Cereb Cortex 15:854–869

    Article  PubMed  Google Scholar 

  • Makris N, Papadimitriou GM, Kaiser JR, Sorg S, Kennedy DN, Pandya DN (2009) Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo. DT-MRI study. Cereb Cortex 19:777–785

    Article  PubMed  Google Scholar 

  • Malfait N, Valyear KF, Culham JC, Anton J, Brown LE, Gribble PL (2010) fMRI activation during observation of others’ reach errors. J Cogn Neurosci 22:1493–1503

    Article  PubMed  Google Scholar 

  • Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  PubMed  CAS  Google Scholar 

  • Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869

    Article  PubMed  CAS  Google Scholar 

  • Naito E, Roland PE, Grefkes C, Choi HJ, Eickhoff S, Geyer S, Zilles K, Ehrsson HH (2005) Dominance of the right hemisphere and role of area 2 in human kinesthesia. J Neurophysiol 93:1020–1034

    Article  PubMed  Google Scholar 

  • Nichols T, Brett M, Andersson J, Wager T, Poline J (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25:653–660

    Article  PubMed  Google Scholar 

  • Oouchida Y, Okada T, Nakashima T, Matsumura M, Sadato N, Naito E (2004) Your hand movements in my somatosensory cortex: a visuo-kinesthetic function in human area 2. NeuroReport 15:2019–2023

    Article  PubMed  Google Scholar 

  • Ortigue S, Thompson JC, Parasuraman R, Grafton ST (2009) Spatio-temporal dynamics of human intention understanding in temporo-parietal cortex: a combined EEG/fMRI repetition suppression paradigm. PLoS ONE 4:e6962

    Article  PubMed  CAS  Google Scholar 

  • Parker GJM, Haroon HA, Wheeler-Kingshott CAM (2003) A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imag 18:242–254

    Article  Google Scholar 

  • Paulesu E, Frith CD, Frackowiak RS (1993) The neural correlates of the verbal component of working memory. Nature 362:342–345

    Article  PubMed  CAS  Google Scholar 

  • Pazzaglia M, Smania N, Corato E, Aglioti SM (2008) Neural underpinnings of gesture discrimination in patients with limb apraxia. J Neurosci 28:3030–3041

    Article  PubMed  CAS  Google Scholar 

  • Pierno AC, Tubaldi F, Turella L, Grossi P, Barachino L, Gallo P, Castiello U (2009) Neurofunctional modulation of brain regions by the observation of pointing and grasping actions. Cereb Cortex 19:367–374

    Article  PubMed  Google Scholar 

  • Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12:718–724

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci USA 97:11800–11806

    Article  PubMed  CAS  Google Scholar 

  • Rice NJ, Tunik E, Grafton ST (2006) The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation. J Neurosci 26:8176–8182

    Article  PubMed  CAS  Google Scholar 

  • Rijntjes M, Dettmers C, Büchel C, Kiebel S, Frackowiak RS, Weiller C (1999) A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci 19:8043–8048

    PubMed  CAS  Google Scholar 

  • Rijntjes M, Weiller C, Bormann T, Musso M (2012) The dual loop model: its relation to language and other modalities. Front Evol Neurosci 4:9

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146–157

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Sinigaglia C (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11:264–274

    Article  PubMed  CAS  Google Scholar 

  • Roth JK, Serences JT, Courtney SM (2006) Neural system for controlling the contents of object working memory in humans. Cereb Cortex 16:1595–1603

    Article  PubMed  Google Scholar 

  • Saur D, Kreher BW, Schnell S, Kümmerer D, Kellmeyer P, Vry M, Umarova R, Musso M, Glauche V, Abel S, Huber W, Rijntjes M, Hennig J, Weiller C (2008) Ventral and dorsal pathways for language. Proc Natl Acad Sci USA 105:18035–18040

    Article  PubMed  CAS  Google Scholar 

  • Saygin AP, Wilson SM, Dronkers NF, Bates E (2004) Action comprehension in aphasia: linguistic and non-linguistic deficits and their lesion correlates. Neuropsychologia 42:1788–1804

    Article  PubMed  Google Scholar 

  • Seelke AMH, Padberg JJ, Disbrow E, Purnell SM, Recanzone G, Krubitzer L (2011) Topographic maps within brodmann’s area 5 of macaque monkeys. Cereb Cortex 22:1834–1850

    Google Scholar 

  • Seghier ML, Fagan E, Price CJ (2010) Functional subdivisions in the left angular gyrus where the semantic system meets and diverges from the default network. J Neurosci 30:16809–16817

    Article  PubMed  CAS  Google Scholar 

  • Seurinck R, Vingerhoets G, de Lange FP, Achten E (2004) Does egocentric mental rotation elicit sex differences? Neuroimage 23:1440–1449

    Article  PubMed  CAS  Google Scholar 

  • Shmuelof L, Zohary E (2005) Dissociation between ventral and dorsal fMRI activation during object and action recognition. Neuron 47:457–470

    Article  PubMed  CAS  Google Scholar 

  • Sirigu A, Duhamel JR, Poncet M (1991) The role of sensorimotor experience in object recognition. A case of multimodal agnosia. Brain 114(Pt 6):2555–2573

    Article  PubMed  Google Scholar 

  • Sweeney JA, Luna B, Keedy SK, McDowell JE, Clementz BA (2007) fMRI studies of eye movement control: investigating the interaction of cognitive and sensorimotor brain systems. Neuroimage 36(Suppl 2):T54–T60

    Article  PubMed  Google Scholar 

  • Tessari A, Canessa N, Ukmar M, Rumiati RI (2007) Neuropsychological evidence for a strategic control of multiple routes in imitation. Brain 130:1111–1126

    Article  PubMed  Google Scholar 

  • Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DGM, Catani M (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246

    Article  PubMed  CAS  Google Scholar 

  • Thompson-Schill SL, Bedny M, Goldberg RF (2005) The frontal lobes and the regulation of mental activity. Curr Opin Neurobiol 15:219–224

    Article  PubMed  CAS  Google Scholar 

  • Townsend BR, Subasi E, Scherberger H (2011) Grasp movement decoding from premotor and parietal cortex. J Neurosci 31:14386–14398

    Article  PubMed  CAS  Google Scholar 

  • Umarova RM, Saur D, Schnell S, Kaller CP, Vry M, Glauche V, Rijntjes M, Hennig J, Kiselev V, Weiller C (2010) Structural connectivity for visuospatial attention: significance of ventral pathways. Cereb Cortex 20:121–129

    Article  PubMed  Google Scholar 

  • Umiltà MA, Kohler E, Gallese V, Fogassi L, Fadiga L, Keysers C, Rizzolatti G (2001) I know what you are doing. A neurophysiological study. Neuron 31:155–165

    Article  PubMed  Google Scholar 

  • Umiltà MA, Escola L, Intskirveli I, Grammont F, Rochat M, Caruana F, Jezzini A, Gallese V, Rizzolatti G (2008) When pliers become fingers in the monkey motor system. Proc Natl Acad Sci USA 105:2209–2213

    Article  PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Analysis of visual behavior. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) MIT Press, Cambridge

  • Valyear KF, Cavina-Pratesi C, Stiglick AJ, Culham JC (2007) Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp? Neuroimage 36(Suppl 2):T94–T108

    Article  PubMed  Google Scholar 

  • van Overwalle F, Baetens K (2009) Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage 48:564–584

    Article  PubMed  Google Scholar 

  • Vingerhoets G, de Lange FP, Vandemaele P, Deblaere K, Achten E (2002) Motor imagery in mental rotation: an fMRI study. Neuroimage 17:1623–1633

    Article  PubMed  Google Scholar 

  • Vingerhoets G, Acke F, Vandemaele P, Achten E (2009) Tool responsive regions in the posterior parietal cortex: effect of differences in motor goal and target object during imagined transitive movements. Neuroimage 47:1832–1843

    Article  PubMed  Google Scholar 

  • Vingerhoets G, Honoré P, Vandekerckhove E, Nys J, Vandemaele P, Achten E (2010) Multifocal intraparietal activation during discrimination of action intention in observed tool grasping. Neuroscience 169:1158–1167

    Article  PubMed  CAS  Google Scholar 

  • Vingerhoets G, Acke F, Alderweireldt A, Nys J, Vandemaele P, Achten E (2011) Cerebral lateralization of praxis in right- and left-handedness: same pattern, different strength. Hum Brain Mapp 33:763–777

    Google Scholar 

  • Vingerhoets G, Stevens L, Meesdom M, Honoré P, Vandemaele P, Achten E (2012) Influence of perspective on the neural correlates of motor resonance during natural action observation. Neuropsychol Rehabil 22:752–767

    Article  PubMed  Google Scholar 

  • Vry M, Saur D, Rijntjes M, Umarova R, Kellmeyer P, Schnell S, Glauche V, Hamzei F, Weiller C (2012) Ventral and dorsal fiber systems for imagined and executed movement. Exp Brain Res 219:203–216

    Article  PubMed  Google Scholar 

  • Weiller C, Musso M, Rijntjes M, Saur D (2009) Please don’t underestimate the ventral pathway in language. Trends Cogn Sci (Regul. Ed.) 13:369–371

    Google Scholar 

  • Weiller C, Bormann T, Saur D, Musso M, Rijntjes M (2011) How the ventral pathway got lost: and what its recovery might mean. Brain Lang 118:29–39

    Article  PubMed  Google Scholar 

  • Weisberg J, van Turennout M, Martin A (2007) A neural system for learning about object function. Cereb Cortex 17:513–521

    Article  PubMed  Google Scholar 

  • Wenderoth N, Debaere F, Sunaert S, van Hecke P, Swinnen SP (2004) Parieto-premotor areas mediate directional interference during bimanual movements. Cereb Cortex 14:1153–1163

    Article  PubMed  Google Scholar 

  • Wenderoth N, Toni I, Bedeleem S, Debaere F, Swinnen SP (2006) Information processing in human parieto-frontal circuits during goal-directed bimanual movements. Neuroimage 31:264–278

    Article  PubMed  Google Scholar 

  • Whitney C, Grossman M, Kircher TTJ (2009) The influence of multiple primes on bottom-up and top-down regulation during meaning retrieval: evidence for 2 distinct neural networks. Cereb Cortex 19:2548–2560

    Article  PubMed  Google Scholar 

  • Wurm MF, Schubotz RI (2012) Squeezing lemons in the bathroom: contextual information modulates action recognition. Neuroimage 59:1551–1559

    Article  PubMed  Google Scholar 

  • Yee E, Drucker DM, Thompson-Schill SL (2010) fMRI-adaptation evidence of overlapping neural representations for objects related in function or manipulation. Neuroimage 50:753–763

    Article  PubMed  Google Scholar 

  • Yoon EY, Humphreys GW, Kumar S, Rotshtein P (2012) The neural selection and integration of actions and objects: an FMRI study. J Cogn Neurosci 24:2268–2279

    Article  PubMed  Google Scholar 

  • Zaitsev M, Hennig J, Speck O (2004) Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 52:1156–1166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a European Union FP7 grant (PLASTICISE: Collaborative Project 223524) and the BrainLiks-BrainTools Cluster of Excellence funded by the German Research Foundation (DFG, grant #EXC1086). We thank Hansjörg Mast for assistance in data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hoeren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoeren, M., Kaller, C.P., Glauche, V. et al. Action semantics and movement characteristics engage distinct processing streams during the observation of tool use. Exp Brain Res 229, 243–260 (2013). https://doi.org/10.1007/s00221-013-3610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3610-5

Keywords

Navigation