Skip to main content
Log in

Solid shape discrimination from vision and haptics: natural objects (Capsicum annuum) and Gibson’s “feelies”

Experimental Brain Research Aims and scope Submit manuscript

Abstract

A set of three experiments evaluated 96 participants’ ability to visually and haptically discriminate solid object shape. In the past, some researchers have found haptic shape discrimination to be substantially inferior to visual shape discrimination, while other researchers have found haptics and vision to be essentially equivalent. A primary goal of the present study was to understand these discrepant past findings and to determine the true capabilities of the haptic system. All experiments used the same task (same vs. different shape discrimination) and stimulus objects (James Gibson’s “feelies” and a set of naturally shaped objects—bell peppers). However, the methodology varied across experiments. Experiment 1 used random 3-dimensional (3-D) orientations of the stimulus objects, and the conditions were full-cue (active manipulation of objects and rotation of the visual objects in depth). Experiment 2 restricted the 3-D orientations of the stimulus objects and limited the haptic and visual information available to the participants. Experiment 3 compared restricted and full-cue conditions using random 3-D orientations. We replicated both previous findings in the current study. When we restricted visual and haptic information (and placed the stimulus objects in the same orientation on every trial), the participants’ visual performance was superior to that obtained for haptics (replicating the earlier findings of Davidson et al. in Percept Psychophys 15(3):539–543, 1974). When the circumstances resembled those of ordinary life (e.g., participants able to actively manipulate objects and see them from a variety of perspectives), we found no significant difference between visual and haptic solid shape discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baldassarre A, Lewis CM, Committeri G, Snyder AZ, Romani GL, Corbetta M (2012) Individual variability in functional connectivity predicts performance of a perceptual task. PNAS 109(9):3516–3521

    Article  PubMed  CAS  Google Scholar 

  • Braunstein ML (1966) Sensitivity of the observer to transformations of the visual field. J Exp Psychol 72(5):683–689

    Article  PubMed  CAS  Google Scholar 

  • Caviness JA (1964) Visual and tactual perception of solid shape. Unpublished doctoral dissertation, Cornell University

  • Cholewiak RW, Collins AA (1997) Individual differences in the vibrotactile perception of a “simple” pattern set. Percept Psychophys 59(6):850–866

    Article  PubMed  CAS  Google Scholar 

  • Cooke T, Jäkel F, Wallraven C, Bülthoff HH (2007) Multimodal similarity and categorization of novel, three-dimensional objects. Neuropsychologia 45:484–495

    Article  PubMed  Google Scholar 

  • Cooke T, Wallraven C, Bülthoff HH (2010) Multidimensional scaling analysis of haptic exploratory procedures. ACM TAP 7(1):7

    Google Scholar 

  • Craddock M, Lawson R (2009) Size-sensitive perceptual representations underlie visual and haptic object recognition. PLoS One 4(11):e8009

    Article  PubMed  Google Scholar 

  • Davidson PW, Abbott S, Gershenfeld J (1974) Influence of exploration time on haptic and visual matching of complex shape. Percept Psychophys 15(3):539–543

    Article  Google Scholar 

  • Edden RAE, Muthukumaraswamy SD, Freeman TCA, Singh KD (2009) Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J Neurosci 29(50):15721–15726

    Article  PubMed  CAS  Google Scholar 

  • Fleming RW, Torralba A, Adelson EH (2004) Specular reflections and the perception of shape. J Vis 4(9):798–820. doi:10.1167/4.9.10

    Article  PubMed  Google Scholar 

  • Foley JD, van Dam A, Feiner SK, Hughes JF (1996) Computer graphics: principles and practice, 2nd edn. in C., Addison-Wesley, Reading, MA

  • Gaissert N, Wallraven C (2012) Categorizing natural objects: a comparison of the visual and the haptic modalities. Exp Brain Res 216:123–134

    Article  PubMed  Google Scholar 

  • Gaissert N, Wallraven C, Bülthoff HH (2010) Visual and haptic perceptual spaces show high similarity in humans. J Vis 10(11):2

    Article  PubMed  Google Scholar 

  • Gibson JJ (1962) Observations on active touch. Psychol Rev 69(6):477–491

    Article  PubMed  CAS  Google Scholar 

  • Gibson JJ (1963) The useful dimensions of sensitivity. Am Psychol 18(1):1–15

    Article  Google Scholar 

  • Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, Boston

    Google Scholar 

  • Goodnow JJ (1971) Eye and hand: differential memory and its effect on matching. Neuropsychologia 9(1):89–95

    Article  PubMed  CAS  Google Scholar 

  • Haggbloom SJ, Warnick R, Warnick JE, Jones VK, Yarbrough GL, Russell TM et al (2002) The 100 most eminent psychologists of the 20th century. Rev Gen Psychol 6(2):139–152

    Article  Google Scholar 

  • Hilbert D, Cohn-Vossen S (1983) Geometry and the imagination. Chelsea, New York

    Google Scholar 

  • Kappers AML, Koenderink JJ, Lichtenegger I (1994) Haptic identification of curved surfaces. Percept Psychophys 56(1):53–61

    Article  PubMed  CAS  Google Scholar 

  • Kappers AML, Koenderink JJ, Oudenaarden G (1997) Large scale differences between haptic and visual judgments of curvature. Perception 26(3):313–320

    Article  PubMed  CAS  Google Scholar 

  • Koenderink JJ (1984) What does the occluding contour tell us about solid shape? Perception 13(3):321–330

    Article  PubMed  CAS  Google Scholar 

  • Koenderink JJ (1990) Solid shape. MIT Press, Cambridge, MA

    Google Scholar 

  • Koenderink JJ (2001) Multiple visual worlds. Perception 30(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Koenderink JJ, van Doorn AJ (1992) Surface shape and curvature scales. Image Vision Comput 10:557–564

    Article  Google Scholar 

  • Koenderink JJ, van Doorn AJ, Kappers AML (1992) Surface perception in pictures. Percept Psychophys 52(5):487–496

    Article  PubMed  CAS  Google Scholar 

  • Koenderink JJ, Kappers AML, Todd JT, Norman JF, Phillips F (1996) Surface range and attitude probing in stereoscopically presented dynamic scenes. J Exp Psychol Hum Percept Perform 22(4):869–878. doi:10.1037/0096-1523.22.4.869

    Article  PubMed  CAS  Google Scholar 

  • Lacey S, Peters A, Sathian K (2007) Cross-modal object recognition is viewpoint-independent. PLoS ONE 2(9):e890

    Article  PubMed  Google Scholar 

  • Lappin JS, Norman JF, Phillips F (2011) Fechner, information, and shape perception. Atten Percept Psychophys 73(8):2353–2378. doi:10.3758/s13414-011-0197-4

    Article  PubMed  Google Scholar 

  • Liu B, Todd JT (2004) Perceptual biases in the interpretation of 3D shape from shading. Vision Res 44:2135–2145

    Article  PubMed  Google Scholar 

  • Martin A, Barnes KA, Stevens WD (2012) Spontaneous neural activity predicts individual differences in performance. PNAS 109(9):3201–3202

    Article  PubMed  CAS  Google Scholar 

  • Norman JF, Bartholomew AN (2011) Blindness enhances tactile acuity and haptic 3-D shape discrimination. Atten Percept Psychophys 73(7):2323–2331. doi:10.3758/s13414-011-0160-4

    Article  PubMed  Google Scholar 

  • Norman JF, Lappin JS (1992) The detection of surface curvatures defined by optical motion. Percept Psychophys 51(4):386–396. doi:10.3758/BF03211632

    Article  PubMed  CAS  Google Scholar 

  • Norman JF, Raines SR (2002) The perception and discrimination of local 3-D surface structure from deforming and disparate boundary contours. Percept Psychophys 64(7):1145–1159. doi:10.3758/BF03194763

    Article  PubMed  Google Scholar 

  • Norman JF, Wiesemann EY (2007) Aging and the perception of local surface orientation from optical patterns of shading and specular highlights. Percept Psychophys 69(1):23–31. doi:10.3758/BF03194450

    Article  PubMed  Google Scholar 

  • Norman JF, Todd JT, Phillips F (1995) The perception of surface orientation from multiple sources of optical information. Percept Psychophys 57(5):629–636. doi:10.3758/BF03213268

    Article  PubMed  CAS  Google Scholar 

  • Norman JF, Lappin JS, Norman HF (2000) The perception of length on curved and flat surfaces. Percept Psychophys 62(6):1133–1145. doi:10.3758/BF03212118

    Article  PubMed  CAS  Google Scholar 

  • Norman JF, Norman HF, Clayton AM, Lianekhammy J, Zielke G (2004) The visual and haptic perception of natural object shape. Percept Psychophys 66(2):342–351. doi:10.3758/BF03194883

    Article  PubMed  Google Scholar 

  • Norman JF, Crabtree CE, Clayton AM, Norman HF (2005) The perception of distances and spatial relationships in natural outdoor environments. Perception 34(11):1315–1324. doi:10.1068/p5304

    Article  PubMed  Google Scholar 

  • Norman JF, Crabtree CE, Norman HF, Moncrief BK, Herrmann M, Kapley N (2006) Aging and the visual, haptic, and cross-modal perception of natural object shape. Perception 35(10):1383–1395. doi:10.1068/p5504

    Article  PubMed  Google Scholar 

  • Norman JF, Bartholomew AN, Burton CL (2008) Aging preserves the ability to perceive 3-D object shape from static but not deforming boundary contours. Acta Psychol 129(1):198–207. doi:10.1016/j.actpsy.2008.06.002

    Article  Google Scholar 

  • Phillips F, Egan EJL, Perry BN (2009) Perceptual equivalence between vision and touch is complexity dependent. Acta Psychol 132(3):259–266. doi:10.1016/j.actpsy.2009.07.010

    Article  CAS  Google Scholar 

  • Puts NAJ, Edden RAE, Evans CJ, McGlone F, McGonigle DJ (2011) Regionally specific human GABA concentration correlates with tactile discrimination thresholds. J Neurosci 31(46):16556–16560

    Article  PubMed  CAS  Google Scholar 

  • Todd JT, Norman JF (2003) The visual perception of 3-D shape from multiple cues: are observers capable of perceiving metric structure? Percept Psychophys 65(1):31–47. doi:10.3758/BF03194781

    Article  PubMed  Google Scholar 

  • Todd JT, Reichel FD (1989) Ordinal structure in the visual perception and cognition of smoothly curved surfaces. Psychol Rev 96(4):643–657

    Article  PubMed  CAS  Google Scholar 

  • Wallach H, O’Connell DN (1953) The kinetic depth effect. J Exp Psychol 45(4):205–217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Patrick Cabe for helping us to locate what is probably the only remaining set of James Gibson’s “feelies.” We also thank David B. Baker, Director of the Archives of the History of American Psychology (http://www3.uakron.edu/ahap/), for allowing us to borrow and laser-scan the feelies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Farley Norman or Flip Phillips.

Additional information

J. Farley Norman and Flip Phillips contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norman, J.F., Phillips, F., Holmin, J.S. et al. Solid shape discrimination from vision and haptics: natural objects (Capsicum annuum) and Gibson’s “feelies”. Exp Brain Res 222, 321–332 (2012). https://doi.org/10.1007/s00221-012-3220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3220-7

Keywords

Navigation