Skip to main content
Log in

Visual information gain and task asymmetry interact in bimanual force coordination and control

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study examined the question of whether and how the influence of visual information on force coordination patterns is dependent on the settings of a task asymmetry constraint. In a bimanual isometric force experiment, the task asymmetry was manipulated via imposing different coefficients on the index finger forces such that the weighted sum of the finger forces matched the target force. The environmental constraint was quantified by the visual performance error and was manipulated through the change of visual gain (number of pixels on the screen representing the unit of force). The constraint arising from the individual was quantified by the bilateral coupling effect (i.e., symmetric force production) between hands. The results revealed improved performance in terms of lower variability and performance error and more complex total force structure with higher visual gain. The influence of visual gain on the force coordination pattern, however, was found to be dependent on the task coefficients imposed on the finger forces. Namely, the force sharing between hands became more symmetric with high visual gain only when the right finger force had the higher coefficient, and an error-compensatory strategy was evident with high gain only when symmetric coefficients were imposed on the two fingers. The findings support the proposition that the motor coordination and control patterns are organized by the interactive influence of different categories of constraints where the functional influence of the information provided is dependent on the motor output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baweja HS, Patel BK, Martinkewiz JD, Vu J, Christou EA (2009) Removal of visual feedback alters muscle activity and reduces force variability during constant isometric contractions. Exp Brain Res 197:35–47

    Article  PubMed  Google Scholar 

  • Baweja HS, Kennedy DM, Vu J, Vaillancourt DE, Christou EA (2010) Greater amount of visual feedback decreases force variability by reducing force oscillations from 0–1 and 3–7 Hz. Eur J Appl Physiol 108:935–943

    Article  PubMed  Google Scholar 

  • Block HJ, Bastian AJ (2010) Sensory reweighting in targeted reaching: effects of conscious effort, error history, and target salience. J Neurophysiol 103:206–217

    Article  PubMed  Google Scholar 

  • Christou EA (2005) Visual feedback attenuates force fluctuations induced by a stressor. Med Sci Sports Exerc 37:2126–2133

    Article  PubMed  Google Scholar 

  • Cole JD, Sedgwick EM (1992) The perceptions of force and of movement in a man without large myelinated sensory afferents below the neck. J Physiol (Lond) 449:503–515

    CAS  Google Scholar 

  • Coombes SA, Corcos DM, Sprute L, Vaillancourt DE (2010) Selective regions of the visuomotor system are related to gain-induced changes in force error. J Neurophysiol 103:2114–2123

    Article  PubMed  Google Scholar 

  • Davids K, Button C, Bennett S (2007) Dynamics of skill acquisition: a constraints-led approach. Human Kinetics, Champaign

    Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  PubMed  CAS  Google Scholar 

  • Gandevia SC, Macefield G, Burke D, McKenzie DK (1990) Voluntary activation of human motor axons in the absence of muscle afferent feedback. The control of the deafferented hand. Brain 113(Pt 5):1563–1581

    Article  PubMed  Google Scholar 

  • Ganesh G, Haruno M, Kawato M, Burdet E (2010) Motor memory and local minimization of error and effort, not global optimization, determine motor behavior. J Neurophysiol 104:382–390

    Article  PubMed  CAS  Google Scholar 

  • Goble JA, Zhang Y, Shimansky Y, Sharma S, Dounskaia NV (2007) Directional biases reveal utilization of arm’s biomechanical properties for optimization of motor behavior. J Neurophysiol 98:1240–1252

    Article  PubMed  Google Scholar 

  • Hong SL, Brown AJ, Newell KM (2008) Compensatory properties of visual information in the control of isometric force. Percept Psychophys 70:306–313

    Article  PubMed  Google Scholar 

  • Hu X, Newell KM (2010) Adaptation to selective visual scaling of short time scale processes in isometric force. Neurosci Lett 469:131–134

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Newell KM (2011a) Adaptation to bimanual asymmetric weights in isometric force coordination. Neurosci Lett 490:121–125

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Newell KM (2011b) Modeling constraints to redundancy in bimanual force coordination. J Neurophysiol 105:2169–2180

    Article  PubMed  Google Scholar 

  • Hu X, Loncharich M, Newell KM (2011) Visual information interacts with neuromuscular factors in the coordination of bimanual isometric force. Exp Brain Res 209:129–138

    Article  PubMed  Google Scholar 

  • Kantowitz BH, Elvers GC (1988) Fitts’ law with an isometric controller: effects of order of control and control-display gain. J Mot Behav 20:53–66

    PubMed  CAS  Google Scholar 

  • Kelso JA (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Weir DJ, Stein JF (1993) Intermittency in human manual tracking tasks. J Mot Behav 25:53–63

    Article  PubMed  CAS  Google Scholar 

  • Morrison S, Newell KM (1998) Interlimb coordination as a function of isometric force output. J Mot Behav 30:323–342

    Article  PubMed  CAS  Google Scholar 

  • Nelson WL (1983) Physical principles for economies of skilled movements. Biol Cybern 46:135–147

    Article  PubMed  CAS  Google Scholar 

  • Newell KM (1986) Constraints on the development of coordination. In: Wade MG, Whiting HTA (eds) Motor development in children: aspects of coordination and control. Martinus Nijhoff, Dordrecht, pp 341–360

    Google Scholar 

  • Newell KM, MacDonald PV (1994) Information, coordination and the control in a prehensile force task. Hum Mov Sci 13:375–391

    Article  Google Scholar 

  • Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88:2297–2301

    Article  PubMed  CAS  Google Scholar 

  • Prodoehl J, Vaillancourt DE (2010) Effects of visual gain on force control at the elbow and ankle. Exp Brain Res 200:67–79

    Article  PubMed  Google Scholar 

  • Ranganathan R, Newell KM (2008a) Motor synergies: feedback and error compensation within and between trials. Exp Brain Res 186:561–570

    Article  PubMed  Google Scholar 

  • Ranganathan R, Newell KM (2008b) Online feedback and the regulation of degrees of freedom in motor control. Hum Mov Sci 27:577–589

    Article  PubMed  Google Scholar 

  • Renshaw I, Davids K, Savelsbergh G (2010) Motor learning in practice: a constraints-led approach. Routledge, Oxford

    Google Scholar 

  • Rosenbaum DA, Loukopoulos LD, Meulenbroek RG, Vaughan J, Engelbrecht SE (1995) Planning reaches by evaluating stored postures. Psychol Rev 102:28–67

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum DA, Dawson AM, Challis JH (2006) Haptic tracking permits bimanual independence. J Exp Psychol Hum Percept Perform 32:1266–1275

    Article  PubMed  Google Scholar 

  • Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258

    Article  PubMed  Google Scholar 

  • Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res 145:437–447

    Article  PubMed  Google Scholar 

  • Schmidt RC, Bienvenu M, Fitzpatrick PA, Amazeen PG (1998) A comparison of intra- and interpersonal interlimb coordination: coordination breakdowns and coupling strength. J Exp Psychol Hum Percept Perform 24:884–900

    Article  PubMed  CAS  Google Scholar 

  • Sosnoff JJ, Newell KM (2005) Intermittent visual information and the multiple time scales of visual motor control of continuous isometric force production. Percept Psychophys 67:335–344

    Article  PubMed  Google Scholar 

  • Sosnoff JJ, Newell KM (2006) Information processing limitations with aging in the visual scaling of isometric force. Exp Brain Res 170:423–432

    Article  PubMed  Google Scholar 

  • Sosnoff JJ, Jordan K, Newell KM (2005) Information and force level interact in regulating force output during two and three digit grip configurations. Exp Brain Res 167:76–85

    Article  PubMed  Google Scholar 

  • Sosnoff JJ, Valantine AD, Newell KM (2009) The adaptive range of 1/f isometric force production. J Exp Psychol Hum Percept Perform 35:439–446

    Article  PubMed  Google Scholar 

  • Swinnen SP, Wenderoth N (2004) Two hands, one brain: cognitive neuroscience of bimanual skill. Trends Cogn Sci 8:18–25

    Article  PubMed  Google Scholar 

  • Swinnen SP, Dounskaia N, Levin O, Duysens J (2001) Constraints during bimanual coordination: the role of direction in relation to amplitude and force requirements. Behav Brain Res 123:201–218

    Article  PubMed  CAS  Google Scholar 

  • Swinnen SP, Li Y, Dounskaia N, Byblow W, Stinear C, Wagemans J (2004) Perception-action coupling during bimanual coordination: the role of visual perception in the coalition of constraints that govern bimanual action. J Mot Behav 36:394–398

    PubMed  Google Scholar 

  • Teasdale N, Forget R, Bard C, Paillard J, Fleury M, Lamarre Y (1993) The role of proprioceptive information for the production of isometric forces and for handwriting tasks. Acta Psychol (Amst) 82:179–191

    Article  CAS  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Tracy BL (2007) Visuomotor contribution to force variability in the plantarflexor and dorsiflexor muscles. Hum Mov Sci 26:796–807

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Russell DM (2002) Temporal capacity of short-term visuomotor memory in continuous force production. Exp Brain Res 145:275–285

    Article  PubMed  Google Scholar 

  • van Beers RJ, Baraduc P, Wolpert DM (2002) Role of uncertainty in sensorimotor control. Philos Trans R Soc Lond B Biol Sci 357:1137–1145

    Article  PubMed  Google Scholar 

  • Wyke M (1968) The effect of brain lesions in the performance of an arm-hand precision task. Neuropsychologia 6:125–134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Newell, K.M. Visual information gain and task asymmetry interact in bimanual force coordination and control. Exp Brain Res 212, 497–504 (2011). https://doi.org/10.1007/s00221-011-2760-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2760-6

Keywords

Navigation