Skip to main content
Log in

Corticospinal excitability is specifically modulated by the social dimension of observed actions

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A large body of research reports that perceiving body movements of other people activates motor representations in the observer’s brain. This automatic resonance mechanism appears to be imitative in nature. However, action observation does not inevitably lead to symmetrical motor facilitation: mirroring the observed movement might be disadvantageous for successfully performing joint actions. In two experiments, we used transcranial magnetic stimulation (TMS) to investigate whether the excitability of the corticospinal system was selectively modulated by the social dimension of an observed action. We recorded motor-evoked potentials (MEPs) from right-hand muscles during the observation of an action sequence which, depending on context, might or might not elicit a complementary response. The results demonstrate a differential motor facilitation depending on action context. Specifically, when the context called for a complementary action, the excitability pattern reflected the under-threshold activation of a complementary action, whereas when the context did not imply acting in a complementary manner, the observer’s corticospinal activity reflected symmetrical motor resonance. We contend that the mechanisms underlying action observation are flexible and respond to contextual factors that guide the social interaction between individuals beyond emulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avenanti A, Bolognini N, Maravita A, Aglioti SM (2007) Somatic and motor components of action simulation. Curr Biol 17:2129–2135

    Article  PubMed  CAS  Google Scholar 

  • Becchio C, Sartori L, Bulgheroni M, Castiello U (2008a) The case of Dr. Jekyll and Mr. Hyde: a kinematic study on social intention. Conscious Cogn 17:557–564

    Article  PubMed  Google Scholar 

  • Becchio C, Sartori L, Bulgheroni M, Castiello U (2008b) Both your intention and mine are reflected in the kinematics of my reach to grasp movement. Cognition 106:894–912

    Article  PubMed  Google Scholar 

  • Becchio C, Sartori L, Castiello U (2010) Toward you: the social side of actions. Curr Dir Psychol Sci 19:183–188

    Article  Google Scholar 

  • Bekkering H, de Bruijn ERA, Cuijpers RH, Newman-Norlund R, van Schie HT, Meulenbroek R (2009) Joint action: neurocognitive mechanisms supporting human interaction. Topics Cogn Sci 1:340–352

    Article  Google Scholar 

  • Bonnet M, Decety J, Requin J, Jeannerod M (1997) Mental simulation of an action modulates the excitability of spinal reflex pathways in man. Cogn Brain Res 5:221–228

    Article  CAS  Google Scholar 

  • Brasil-Neto JP, Cohen LG, Panizza M, Nilsson J, Roth BJ, Hallett M (1992) Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse, and stimulus intensity. J Clin Neurophysiol 9:132–136

    Article  PubMed  CAS  Google Scholar 

  • Brass M, Derrfuss J, von Cramon DY (2001) The inhibition of imitative and overlearned responses: a functional double dissociation. Neuropsychologia 43:89–98

    Article  Google Scholar 

  • Brass M, Zysset S, von Cramon DY (2005) The inhibition of imitative response tendencies. Neuroimage 14:1416–1423

    Article  Google Scholar 

  • Briggs GG, Nebes RD (1975) Patterns of hand preference in a student population. Cortex 11:230–238

    PubMed  CAS  Google Scholar 

  • Buccino G, Sato M, Cattaneo L, Rodà F, Riggio L (2009) Broken affordances, broken objects: a TMS study. Neuropsychologia 47:3074–3078

    Article  PubMed  Google Scholar 

  • Decety J, Jackson PL, Sommerville JA, Chaminade T, Meltzoff AN (2004) The neural bases of cooperation and competition: an fMRI study. NeuroImage 23:744–751

    Article  PubMed  Google Scholar 

  • di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91:176–180

    PubMed  CAS  Google Scholar 

  • Etzel JA, Gazzola V, Keysers C (2008) Testing simulation theory with cross-modal multivariate classification of fMRI data. PLoS ONE 3:e3690

    Article  PubMed  Google Scholar 

  • Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73:2608–2611

    PubMed  CAS  Google Scholar 

  • Fadiga L, Buccino G, Craighero L, Fogassi L, Gallese V, Pavesi G (1999) Corticospinal excitability is specifically modulated by motor imagery. A magnetic stimulation study. Neuropsychologia 37:147–158

    Article  PubMed  CAS  Google Scholar 

  • Fadiga L, Craighero L, Olivier E (2005) Human motor cortex excitability during the perception of others’ actions. Curr Op Neurobiol 15:213–218

    Article  PubMed  CAS  Google Scholar 

  • Fourkas A, Avenanti A, Urgesi C, Aglioti SM (2006) Corticospinal facilitation during first and third person imagery. Exp Brain Res 168:143–151

    Article  PubMed  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    Article  PubMed  Google Scholar 

  • Gazzola V, Keysers C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI Data. Cereb Cortex 19:1239–1255

    Article  PubMed  Google Scholar 

  • Georgiou J, Becchio C, Glover S, Castiello U (2007) Different action patterns for cooperative and competitive behaviour. Cognition 102:415–433

    Article  PubMed  Google Scholar 

  • Jeannerod M, Frak V (1999) Mental imaging of motor activity in humans. Curr Op Neurobiol 9:735–739

    Article  PubMed  CAS  Google Scholar 

  • Kasai T, Kawai S, Kawanishi M, Yahagi S (1997) Evidence for facilitation of motor evoked potentials (MEPs) induced by motor imagery. Brain Res 744:147–150

    Article  PubMed  CAS  Google Scholar 

  • Kilner J, Vargas C, Duval S, Blakemore SJ, Sirigu A (2004) Motor activation prior to observation of a predicted movement. Nat Neurosci 7:1299–1301

    Article  PubMed  CAS  Google Scholar 

  • Knoblich G, Jordan S (2002) The mirror system and joint action. In: Samenov M, Gallese V (eds) Mirror neurons and the evolution of brain and language. John Benjamins, Amsterdam, pp 115–124

    Google Scholar 

  • Koch G, Versace V, Bonnì S, Lupo F, Lo Gerfo E, Oliveri M, Caltagirone C (2010) Resonance of cortico-cortical connections of the motor system with the observation of goal directed grasping movements. Neuropsychologia 48:3513–3520

    Google Scholar 

  • Kokal I, Keysers C (2010) Granger causality mapping during joint actions reveals evidence for forward models that could overcome sensory-motor delays. PLoS One 5:e13507

    Article  PubMed  Google Scholar 

  • Kokal I, Gazzola V, Keysers C (2009) Acting together in and beyond the mirror neuron system. Neuroimage 47:2046–2056

    Article  PubMed  Google Scholar 

  • Mills KR, Boniface SJ, Schubert M (1992) Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephal Clin Neurophysiol 85:17–21

    Article  CAS  Google Scholar 

  • Newman-Nordlund RD, van Schie HT, van Zuijlen AM, Bekkering H (2007) The mirror neuron system is more activated during complementary compared with imitative action. Nat Neurosci 10:817–818

    Article  Google Scholar 

  • Newman-Nordlund RD, Bosga J, Meulenbroek RG, Bekkering H (2008) Anatomical substrates of cooperative joint-action in a continuous motor task: virtual lifting and balancing. Neuroimage 41:169–177

    Article  Google Scholar 

  • Ocampo B, Kritikos A (2010) Placing actions in context: motor facilitation following observation of identical and non-identical manual acts. Exp Brain Res 201:743–751

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670

    Article  PubMed  CAS  Google Scholar 

  • Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039

    Article  PubMed  Google Scholar 

  • Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ et al (1994) Noninvasive electrical and magnetic stimulation of the brain, spinal-cord and roots-basic principles and procedures for routine clinical application. Electroencephal Clin Neurophysiol 91:79–82

    Article  CAS  Google Scholar 

  • Sartori L, Becchio C, Bara BG, Castiello U (2009a) Does the intention to communicate affect action kinematics? Conscious Cogn 8:766–772

    Article  Google Scholar 

  • Sartori L, Becchio C, Castiello U (2009b) Modulation of the action control system by social intention: unexpected social requests override preplanned action. J Exp Psychol Hum Percept Perf 35:1490–1500

    Article  Google Scholar 

  • Sebanz N, Frith C (2004) Beyond simulation? Neural mechanisms for predicting the actions of others. Nat Neurosci 7:5–6

    Article  PubMed  CAS  Google Scholar 

  • Sebanz N, Knoblich G, Prinz W (2003) Representing other’s actions: just like one’s own? Cognition 88:B11–B12

    Article  PubMed  Google Scholar 

  • Sebanz N, Bekkering H, Knoblich G (2006a) Joint action: bodies and minds moving together. Trends Cogn Sci 10:70–76

    Article  PubMed  Google Scholar 

  • Sebanz N, Knoblich G, Prinz W, Wascher E (2006b) Twin peaks: an ERP study of action planning and control in co-acting individuals. J Cogn Neurosci 18:859–870

    Article  PubMed  Google Scholar 

  • Tucker M, Ellis R (1998) On the relations between seen objects and components of potential actions. J Exp Psychol Hum Percept Perf 24:830–846

    Article  CAS  Google Scholar 

  • Urgesi C, Maieron M, Avenanti A, Tidoni E, Fabbro F, Aglioti SM (2010) Simulating the future of actions in the human corticospinal system. Cereb Cortex 20:2511–2521

    Article  PubMed  Google Scholar 

  • van Schie HT, Bekkering H (2007) Neural mechanisms underlying immediate and final action goals in object use reflected by slow wave brain potentials. Brain Res 1148:183–197

    Article  PubMed  Google Scholar 

  • van Schie HT, van Waterschoot BM, Bekkering H (2008) Understanding action beyond imitation: reversed compatibility effects of action observation in imitation and joint action. J Exp Psychol Hum Percept Perform 34:1493–1500

    Article  PubMed  Google Scholar 

  • Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the international workshop on the safety of repetitive transcranial magnetic stimulation, June 5–7, 1996. Electroencephal Clin Neurophysiol 108:1–16

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Castiello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sartori, L., Cavallo, A., Bucchioni, G. et al. Corticospinal excitability is specifically modulated by the social dimension of observed actions. Exp Brain Res 211, 557–568 (2011). https://doi.org/10.1007/s00221-011-2650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2650-y

Keywords

Navigation