Skip to main content
Log in

Spinal cord modularity: evolution, development, and optimization and the possible relevance to low back pain in man

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. While muscle synergy, premotor drive burst, and motor primitive have been used as largely synonymous terms, we suggest that the term ‘primitive’ may best indicate the idea of a set of building blocks or a developmental bootstrap elements that is used in a constructive or compositional fashion. Synergy is a significantly broader term, while synchronous premotor drive burst is more specific and potentially narrower.

References

  • Abbott LF (2006) Where are the switches on this thing? In: van Hemmen JL, Sejnowski TJ (eds) 23 Problems in systems neuroscience. Oxford University Press, New York, pp 423–431

    Chapter  Google Scholar 

  • Allum JH, Honegger F, Acuna H (1995) Differential control of leg and trunk muscle activity by vestibulo-spinal and proprioceptive signals during human balance corrections. Acta Otolaryngol 115(2):124–129

    Article  CAS  PubMed  Google Scholar 

  • Asada H, Slotine JJ (1986) Robot analysis and control. Wiley, New York

    Google Scholar 

  • Baldwin MJ (1896) A new factor in evolution. Am Nat 30(354):441–451

    Article  Google Scholar 

  • Bergmark A (1989) Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand Suppl 230:1–54

    CAS  PubMed  Google Scholar 

  • Berkowitz A (2008) Physiology and morphology of shared and specialized spinal interneurons for locomotion and scratching. J Neurophysiol 99(6):2887–2901

    Article  PubMed  Google Scholar 

  • Berniker M, Jarc A, Bizzi E, Tresch MC (2009) Simplified and effective motor control based on muscle synergies to exploit musculoskeletal dynamics. Proc Natl Acad Sci USA 106(18):7601–7606

    Article  CAS  PubMed  Google Scholar 

  • Bernstein N (1967) The co-ordination and regulation of movements. Pergamon Press, Oxford

    Google Scholar 

  • Biely S, Smith S, Silfies SP (2006) Clinical instability of the lumbar spine: diagnosis and intervention. Ortho Phys Ther Pract 18(3):11–18

    Google Scholar 

  • Bizzi E, Mussa-Ivaldi FA, Giszter S (1991) Computations underlying the execution of movement: a biological perspective. Science 253(5017):287–291

    Article  CAS  PubMed  Google Scholar 

  • Bly NN, Sinnott PL (1991) Variations in balance and body sway in middle-aged adults. Subjects with healthy backs compared with subjects with low-back dysfunction. Spine 16(3):325–330

    Article  Google Scholar 

  • Bradley NS (2003) Connecting the dots between animal and human studies of locomotion focus on “infants adapt their stepping to repeated trip-inducing stimuli”. J Neurophysiol 90(4):2088–2089

    Article  PubMed  Google Scholar 

  • Bradley NS, Solanki D, Zhao D (2005) Limb movements during embryonic development in the chick: evidence for a continuum in limb motor control antecedent to locomotion. J Neurophysiol 94(6):4401–4411

    Article  PubMed  Google Scholar 

  • Bradley NS, Ryu YU, Lin J (2008) Fast locomotor burst generation in late stage embryonic motility. J Neurophysiol 99(4):1733–1742

    Article  PubMed  Google Scholar 

  • Brookfield JFY (2009) Evolution and evolvability: celebrating Darwin 200. Biol Lett 2009(5):44–46

    Article  Google Scholar 

  • Brumagne S, Cordo P, Verschueren S (2004) Proprioceptive weighting changes in persons with low back pain and elderly persons during upright standing. Neurosci Lett 366(1):63–66

    Article  CAS  PubMed  Google Scholar 

  • Brumagne S, Janssens L, Janssens E, Goddyn L (2008) Altered postural control in anticipation of postural instability in persons with recurrent low back pain. Gait Posture 28(4):657–662

    Article  PubMed  Google Scholar 

  • Burdet E, Milner TE (1998) Quantization of human motions and learning of accurate movements. Biol Cybern 78:307–318

    Article  CAS  PubMed  Google Scholar 

  • Cabaj A, Stecina K, Jankowska E (2006) Same spinal interneurons mediate reflex actions of group Ib and group II afferents and crossed reticulospinal actions. J Neurophysiol 95(6):3911–3922

    Article  CAS  PubMed  Google Scholar 

  • Calabretta R, Nolfi S, Parisi D, Wagner GP (2000) Duplication of modules facilitates the evolution of functional specialization. Artif Life 6(1):69–84

    Article  CAS  PubMed  Google Scholar 

  • Calabretta R, Ferdinando AD, Wagner GP, Parisi D (2003) What does it take to evolve behaviorally complex organisms? Biosystems 69(2–3):245–262

    Article  PubMed  Google Scholar 

  • Callebaut W and Rasskin-Gutman (eds) (2005) Modularity: understanding the development and evolution of natural complex systems. MIT Press, Cambridge

  • Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F (2006) Motor patterns in human walking and running. J Neurophysiol 95(6):3426–3437

    Article  CAS  PubMed  Google Scholar 

  • Chabra M, Jacobs RA (2006) Properties of synergies arising from a theory of optimal motor behavior. Neural Comput 18:2320–2342

    Article  Google Scholar 

  • Cheung VC, d’Avella A, Bizzi E (2009) Adjustments of motor pattern for load compensation via modulated activations of muscle synergies during natural behaviors. J Neurophysiol 101(3):1235–1257

    Article  PubMed  Google Scholar 

  • Cholewicki J, McGill SM (1996) Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin Biomech (Bristol, Avon) 11(1):1–15

    Article  Google Scholar 

  • Cholewicki J, Panjabi MM, Khachatryan A (1997) Stabilizing function of trunk flexor–extensor muscles around a neutral spine posture. Spine 22(19):2207–2212

    Article  CAS  PubMed  Google Scholar 

  • Cholewicki J, van Dieen JH, Arsenault AB (2003) Muscle function and dysfunction in the spine. J Electromyogr Kinesiol 13(4):303–304

    Article  PubMed  Google Scholar 

  • Cholewicki J, Silfies SP, Shah RA, Greene HS, Reeves NP, Alvi K (2005) Delayed trunk muscle reflex responses increase the risk of low back injuries. Spine 30(23):2614–2620

    Article  PubMed  Google Scholar 

  • Clarac F, Brocard F (2004) The maturation of locomotor networks. Prog Brain Res 143:57–66

    Article  PubMed  Google Scholar 

  • Claus AP, Hides JA, Moseley GL, Hodges PW (2009) Different ways to balance the spine: subtle changes in sagittal spinal curves affect regional muscle activity. Spine 34(6):E208–E214

    Article  PubMed  Google Scholar 

  • Clewley RH, Guckenheimer JM, Valero-Cuevas FJ (2008) Estimating effective degrees of freedom in motor systems. IEEE Trans Biomed Eng 55(2 Pt 1):430–442

    Article  PubMed  Google Scholar 

  • Colgate JE, Hogan N (1988) Robust control of dynamically interacting systems. Int J Control 48(1):65–88

    Article  Google Scholar 

  • Collins JJ (1995) The redundant nature of locomotor optimization laws. J Biomech 28:251–267

    Article  CAS  PubMed  Google Scholar 

  • d’Avella A, Bizzi E (2005) Shared and specific muscle synergies in natural motor behaviors. Proc Natl Acad Sci USA 102(8):3076–3081

    Article  PubMed  CAS  Google Scholar 

  • d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6(3):300–308

    Google Scholar 

  • d’Avella A, Portone A, Fernandez L, Lacquaniti F (2006) Control of fast-reaching movements by muscle synergy combinations. J Neurosci 26(30):7791–7810

    Google Scholar 

  • d’Avella A, Fernandez L, Portone A, Lacquaniti F (2008) Modulation of phasic and tonic muscle synergies with reaching direction and speed. J Neurophysiol 100(3):1433–1454

    Google Scholar 

  • Dasen JS, Liu J-P, Jessell TM (2003) Motor neuron columnar fate imposed by sequential phases of Hox-c activity. Nature 425:926–933

    Article  CAS  PubMed  Google Scholar 

  • Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288(5463):100–106

    Article  CAS  PubMed  Google Scholar 

  • Dietz V (2002) Do human bipeds use quadrupedal coordination? TINS 25(9):462–467

    PubMed  Google Scholar 

  • Dizio P, Lackner JR (1995) Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm. J Neurophysiol 74(4):1787–1792

    CAS  PubMed  Google Scholar 

  • Draghi J, Wagner GP (2007) Evolution of evolvability in a developmental model. Evolution 62:301–315

    Article  PubMed  Google Scholar 

  • Duch C, Pflüger H-J (1995) Motor patterns for horizontal and upside walking and vertical climbing in the locust. J Exp Biol 198:1963–1976

    PubMed  Google Scholar 

  • Earhart GM, Stein PS (2000a) Step, swim, and scratch motor patterns in the turtle. J Neurophysiol 84(5):2181–2190

    Google Scholar 

  • Earhart GM, Stein PS (2000b) Scratch-swim hybrids in the spinal turtle: blending of rostral scratch and forward swim. J Neurophysiol 83(1):156-165

    Google Scholar 

  • Ebenbichler GR, Oddsson LI, Kollmitzer J, Erim Z (2001) Sensory-motor control of the lower back: implications for rehabilitation. Med Sci Sports Exerc 33(11):1889–1898

    Article  CAS  PubMed  Google Scholar 

  • Feldman AG (2009) Origin and advances of the equilibrium-point hypothesis. Adv Exp Med Biol 629:637–643

    Article  PubMed  Google Scholar 

  • Feldman AG, Levin MF (2009) The equilibrium-point hypothesis—past, present and future. Adv Exp Med Biol 629:699–726

    Article  PubMed  Google Scholar 

  • Fentress JC (1973) Development of grooming in mice with amputated forelimbs. Science 179(74):704–705

    Article  CAS  PubMed  Google Scholar 

  • Fentress JC (2009) Streams and patterns in behavior as challenges for future technologies. Behav Res Methods 41(3):765–771

    Google Scholar 

  • Ferreira P, Ferreira M, Maher C, Refshauge K, Herbert R, Hodges P (2009) Changes in recruitment of transversus abdominis correlate with disability in people with chronic low back pain. Br J Sports Med

  • Fischer MS, Witte H (2007) Legs evolved only at the end!. Philos Transact A Math Phys Eng Sci 365(1850):185–198

    Article  PubMed  Google Scholar 

  • Flash T, Hochner B (2005) Motor primitives in vertebrates and invertebrates. Curr Opin Neurobiol 15(6):660–666

    Article  CAS  PubMed  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703

    CAS  PubMed  Google Scholar 

  • Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814

    Article  CAS  PubMed  Google Scholar 

  • Full RJ, Koditschek DE (1999) Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J Exp Biol 202(Pt 23):3325–3332

    CAS  PubMed  Google Scholar 

  • Full RJ, Tu MS (1991) Mechanics of rapid running insects: two-, four- and six-legged locomotion. J Exp Biol 156:215–231

    CAS  PubMed  Google Scholar 

  • Gejo R, Matsui H, Kawaguchi Y, Ishihara H, Tsuji H (1999) Serial changes in trunk muscle performance after posterior lumbar surgery. Spine 24(10):1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Giszter SF (2008) Motor primitives. In: Squire LR (ed) Encyclopedia of neuroscience. Academic Press, Oxford

    Google Scholar 

  • Giszter SF, Kargo WJ (2000) Conserved temporal dynamics and vector superposition of primitives in frog wiping reflexes during spontaneous extensor deletions. Neurocomputing 32–33:775–783

    Article  Google Scholar 

  • Giszter SF, Kargo WJ (2001) Modeling of dynamic controls in the frog wiping reflex: force-field level controls. Neurocomputing 38–40:1239–1247

    Article  Google Scholar 

  • Giszter SF, Kargo WJ (2002) Separation and estimation of muscle spindle and tension receptor populations by vibration of the biceps muscle in the frog. Ital Arch Biol 140:283–294

    CAS  Google Scholar 

  • Giszter SF, Mussa-Ivaldi FA, Bizzi E (1993) Convergent force fields organized in the frog spinal cord. J Neurosci 13:467–491

    CAS  PubMed  Google Scholar 

  • Giszter SF, Kargo WJ, Davies M, Shibayama M (1998) Fetal transplants rescue axial muscle representations in M1 cortex of neonatally transected rats that develop weight support. J Neurophysiol 80(6):3021–3030

    Google Scholar 

  • Giszter SF, Moxon KA, Rybak I, Chapin JK (2000) A neurobiological perspective on design of humanoid robots and their components. IEEE Intell Syst 15(4):64–69

    Article  Google Scholar 

  • Giszter SF, Moxon KA, Rybak I, Chapin JK (2001) Neurobiological and neurorobotic approaches to design of a controller for a humanoid motor system. Rob Auton Syst 37:219–235

    Article  Google Scholar 

  • Giszter SF, Davies MR, Graziani VG (2007a) Motor strategies used by rats spinalized at birth to maintain stance in response to imposed perturbations. J Neurophysiol 97(4):2663–2675

    Article  PubMed  Google Scholar 

  • Giszter SF, Patil V, Hart CB (2007b) Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective. Prog Brain Res 165:323–346

    Article  PubMed  Google Scholar 

  • Giszter SF, Davies MR, Graziani V (2008a) Coordination strategies for limb forces during weight-bearing locomotion in normal rats, and in rats spinalized as neonates. Exp Brain Res 190(1):53–69

    Article  PubMed  Google Scholar 

  • Giszter SF, Davies MR, Ramakrishnan A, Udoekwere UI, Kargo WJ (2008b) Trunk sensorimotor cortex is essential for hindlimb weight-supported locomotion in adult rats spinalized as P1/P2 neonates. J Neurophysiol 100(2):839–851

    Article  PubMed  Google Scholar 

  • Golani I, Fentress JC (1985) Early ontogeny of face grooming in mice. Dev Psychobiol 18(6):529–544

    Google Scholar 

  • Goldby LJ, Moore AP, Doust J, Trew ME (2006) A randomized controlled trial investigating the efficiency of musculoskeletal physiotherapy on chronic low back disorder. Spine 31(10):1083–1093

    Article  PubMed  Google Scholar 

  • Gorassini MA, Prochazka A, Hiebert GW, Gauthier MJ (1994) Corrective responses to loss of ground support during walking. I. Intact cats. J Neurophysiol 71(2):603–610

    CAS  PubMed  Google Scholar 

  • Gorniak SL, Zatsiorsky VM, Latash ML (2009) Hierarchical control of static prehension: II. Multi-digit synergies. Exp Brain Res 194(1):1–15

    Article  PubMed  Google Scholar 

  • Gottlieb GL (1998) Muscle activation patterns during two types of voluntary single-joint movement. J Neurophysiol 80:1860–1867

    CAS  PubMed  Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598

    Article  CAS  PubMed  Google Scholar 

  • Granata KP, Rogers E, Moorhouse K (2005) Effects of static flexion-relaxation on paraspinal reflex behavior. Clin Biomech 20:16–24

    Article  Google Scholar 

  • Grau JW, Crown ED, Ferguson AR, Washburn SN, Hook MA, Miranda RC (2006) Instrumental learning within the spinal cord: underlying mechanisms and implications for recovery after injury. Behav Cogn Neurosci Rev 5(4):191–239

    Article  PubMed  Google Scholar 

  • Greene HS, Cholewicki J, Galloway MT, Nguyen CV, Radebold A (2001) A history of low back injury is a risk factor for recurrent back injuries in varsity athletes. Am J Sport Med 29(6):795–800

    CAS  Google Scholar 

  • Grillner S, Perret C, Zangger P (1976) Central generation of locomotion in the spinal dogfish. Brain Res 109(2):255–269

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour. J Theor Biol 7:1–52

    Article  CAS  PubMed  Google Scholar 

  • Hart CB, Giszter SF (2004) Modular premotor drives and unit bursts as primitives for frog motor behaviors. J Neurosci 24(22):5269–5282

    Article  CAS  PubMed  Google Scholar 

  • Hart CB, Giszter SF (2009) Neural Underpinnings of Motor Primitives. J Neurosci (Accepted)

  • Henry SM, Hitt JR, Jones SL, Bunn JY (2006) Decreased limits of stability in response to postural perturbations in subjects with low back pain. Clin Biomech (Bristol, Avon) 21(9):881–892

    Google Scholar 

  • Hides JA, Stokes MJ, Saide M, Jull GA, Cooper DH (1994) Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine 19(2):165–172

    Article  CAS  PubMed  Google Scholar 

  • Hides JA, Richardson CA, Jull GA (1996) Multifidus muscle recovery is not automatic after resolution of acute, first-episode low back pain. Spine 21(23):2763–2769

    Article  CAS  PubMed  Google Scholar 

  • Hides JA, Jull GA, Richardson CA (2001) Long-term effects of specific stabilizing exercises for first-episode low back pain. Spine 26(11):E243–E248

    Article  CAS  PubMed  Google Scholar 

  • Hinde RA (1970) Animal behaviour: a synthesis of ethology and comparative psychology, 2nd edn. McGraw-Hill, New York

  • Hodges PW (2001) Changes in motor planning of feedforward postural responses of the trunk muscles in low back pain. Exp Brain Res 141(2):261–266

    Article  CAS  PubMed  Google Scholar 

  • Hodges PW, Moseley GL (2003) Pain and motor control of the lumbopelvic region: effect and possible mechanisms. J Electromyogr Kinesiol 13(4):361–370

    Google Scholar 

  • Hodges PW, Richardson CA (1996) Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine (Phila Pa 1976) 21(22):2640–2650

    CAS  Google Scholar 

  • Hodges PW, Richardson CA (1997) Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther 77(2):132–142 discussion 42–44

    CAS  PubMed  Google Scholar 

  • Hodges PW, Richardson CA (1998) Delayed postural contraction of transversus abdominis in low back pain associated with movement of the lower limb. J Spinal Disord 11(1):46–56

    Google Scholar 

  • Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4(11):2745–2754

    CAS  PubMed  Google Scholar 

  • Holm S, Indahl A, Solomonow M (2002) Sensorimotor control of the spine. J Electromyogr Kinesiol 12:219–234

    Article  PubMed  Google Scholar 

  • Hyun JK, Lee JY, Lee SJ, Jeon JY (2007) Asymmetric atrophy of multifidus muscle in patients with unilateral lumbosacral radiculopathy. Spine 32(21):E598–E602

    Article  PubMed  Google Scholar 

  • Ijspeert A, Nakanishi J, Schaal S (2003) Learning attractor landscapes for learning motor primitives. In: Becker S, Thrun S, Obermayer K (eds) Advances in Neural Information Processing Systems 15. MIT Press, Cambridge, pp 1547–1554

    Google Scholar 

  • Iscoe S (1998) Control of abdominal muscles. Prog Neurobiol 56(4):433–506

    Article  CAS  PubMed  Google Scholar 

  • Izawa J, Rane T, Donchin O, Shadmehr R (2008) Motor adaptation as a process of reoptimization. J Neurosci 28(11):2883–2891

    Article  CAS  PubMed  Google Scholar 

  • Jablonski NG, Chaplin G (1993) Origin of habitual terrestrial bipedalism in the ancestor of the Hominidae. J Hum Evol 24:259–280

    Article  Google Scholar 

  • Jull GA, Richardson CA (2000) Motor control problems in patients with spinal pain: a new direction for therapeutic exercise. J Manipulat Physiol Therapeutics 23(2):115–117

    Article  CAS  Google Scholar 

  • Kargo WJ, Giszter SF (2000a) Afferent roles in hindlimb wiping reflex: free limb kinematics and motor patterns. J Neurophysiol 83(3):1480–1501

    CAS  PubMed  Google Scholar 

  • Kargo WJ, Giszter SF (2000b) Rapid corrections of aimed movements by combination of force-field primitives. J Neurosci 20:409–426

    CAS  PubMed  Google Scholar 

  • Kargo WJ, Giszter SF (2008) Individual premotor drive pulses, not time-varying synergies, are the units of adjustment for limb trajectories constructed in spinal-cord. J Neurosci 28(10):2409–2425

    Article  CAS  PubMed  Google Scholar 

  • Kargo WJ, Rome L (2002) Functional morphology of proximal hindlimb muscles in the frog rana pipiens. J Exp Biol 205(Pt 14):1987–2004

    PubMed  Google Scholar 

  • Kargo WJ, Ramakrishnan A, Hart CB, Rome L, Giszter SF (2009) A simple experimentally-based model using proprioceptive regulation of motor primitives captures adjusted trajectory formation in spinal frogs. J Neurophysiology. (Accepted)

  • Kiehn O, Hounsgard J, Sillar KT (1997) Basic building blocks of vertebrate CPGs. In: Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) Neurons, networks and motor behavior. MIT press, Cambridge, pp 47–60

    Google Scholar 

  • Koumantakis GA, Watson PJ, Oldham JA (2005) Trunk muscle stabilization training plus general exercise versus general exercise only: randomized controlled trial of patients with recurrent low back pain. Phys Ther 85(3):209–225

    PubMed  Google Scholar 

  • Krouchev N, Kalaska JF, Drew T (2006) Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition. J Neurophysiol 96(4):1991–2010

    Article  PubMed  Google Scholar 

  • Kuo AD (2002) The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control 6(2):129–145

    PubMed  Google Scholar 

  • Kuo AD, Donelan JM, Ruina A (2005) Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exerc Sport Sci Rev 33(2):88–97

    Article  PubMed  Google Scholar 

  • Kutch JJ, Kuo AD, Bloch AM, Rymer WZ (2008) Endpoint force fluctuations reveal flexible rather than synergistic patterns of muscle cooperation. J Neurophysiol 100(5):2455–2471

    Article  PubMed  Google Scholar 

  • Lackner JR, Dizio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72(1):299–313

    CAS  PubMed  Google Scholar 

  • Lackner JR, DiZio P (2005) Motor control and learning in altered dynamic environments. Curr Opin Neurobiol 15(6):653–659 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Lackner JR, DiZio P (2009) Control and calibration of multi-segment reaching movements. Adv Exp Med Biol 629:681–698

    Article  PubMed  Google Scholar 

  • Lafreniere-Roula M, McCrea DA (2005) Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J Neurophysiol 94(2):1120–1132

    Article  PubMed  Google Scholar 

  • Lamoth CJ, Meijer OG, Wuisman PI, van Dieën JH, Levin MF, Beek PJ (2002) Pelvis-thorax coordination in the transverse plane during walking in persons with nonspecific low back pain. Spine (Phila Pa 1976) 27(4):E92–E99

    Google Scholar 

  • Lamoth CJ, Meijer OG, Daffertshofer A, Wuisman PI, Beek PJ (2005) Effects of chronic low back pain on trunk coordination and back muscle activity during walking: changes in motor control. Eur Spine J 5:23–40

    Article  Google Scholar 

  • Lariviere C, Gagnon D, Loisel P (2000) An application of pattern recognition for the comparison of trunk muscles EMG waveforms between subjects with and without chronic low back pain during flexion–extension and lateral bending tasks. J Electromyogr Kinesiol 10(4):261–273

    Article  CAS  PubMed  Google Scholar 

  • Larsen GS, Frazier SF, Fish SE, Zill SN (1995) Effects of load inversion in cockroach walking. J Comp Physiol A 176:229–238

    Article  CAS  PubMed  Google Scholar 

  • Lemay MA, Grill WM (2004) Modularity of motor output evoked by intraspinal microstimulation in cats. J Neurophysiol 91(1):502–514

    Article  PubMed  Google Scholar 

  • Liu D, Todorov E (2007) Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. J Neurosci 27(35):9354–9368

    Article  CAS  PubMed  Google Scholar 

  • Lockhart DB, Ting LH (2007) Optimal sensorimotor transformations for balance. Nat Neurosci 10(10):1329–1336

    Article  CAS  PubMed  Google Scholar 

  • Loeb GE (1999) Asymmetry of hindlimb muscle activity and cutaneous reflexes after tendon transfers in kittens. J Neurophysiol 82(6):3392–3394

    CAS  PubMed  Google Scholar 

  • Loeb GE (2000) Overcomplete musculature or underspecified tasks? Motor Control 4:81–83 discussion 97–116

    CAS  PubMed  Google Scholar 

  • Loeb GE, He J, Levine WS (1989) Spinal cord circuits: are they mirrors of musculoskeletal mechanics? J Mot Behav 21(4):473–491

    CAS  PubMed  Google Scholar 

  • Loeb GE, Levine WS, He J (1990) Understanding sensorimotor feedback through optimal control. Cold Spring Harb Symp Quant Biol 55:791–803

    CAS  PubMed  Google Scholar 

  • Loeb GE, Brown IE, Cheng EJ (1999) A hierarchical foundation for models of sensorimotor control. Exp Brain Res 126(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Lucas DB, Bresler B (1960) Stabiltiy of the ligamentous spine. Technical report. Biomechanics Laboratory, University of California, Berkley, San Francisco

  • Lundberg A, Malmgren K, Schomburg ED (1987a) Reflex pathways from group II muscle afferents: 2 functional characteristics of reflex pathways to a-motoneurones. Exp Brain Res 65:282–293

    Article  CAS  PubMed  Google Scholar 

  • Lundberg A, Malmgren K, Schomburg ED (1987b) Reflex pathways from group II muscle afferents: 3 secondary spindle afferents and the FRA: a new hypothesis. Exp Brain Res 65:294–306

    Article  CAS  PubMed  Google Scholar 

  • Luoto S, Taimela S, Alaranta H, Hurri H (1998) Psychomotor speed in chronic low-back pain patients and healthy controls: construct validity and clinical significance of the measure. Percept Mot Skills 87(3 Pt 2):1283–1296

    CAS  PubMed  Google Scholar 

  • MacDonald DA, Moseley GL, Hodges PW (2006) The lumbar multifidus: does the evidence support clinical beliefs? Man Ther 11(4):254–263

    Article  PubMed  Google Scholar 

  • MacDonald D, Moseley GL, Hodges PW (2009) Why do some patients keep hurting their back? Evidence of ongoing back muscle dysfunction during remission from recurrent back pain. Pain 142(3):183–188

    Article  PubMed  Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11:R986–R996

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7(7):563–574

    Article  CAS  PubMed  Google Scholar 

  • Marr D (1983) Vision. A computational investigation into the human representation and processing of visual information. WH Freeman, San Francisco

    Google Scholar 

  • Martin JH, Cooper SE, Ghez C (1995) Kinematic analysis of reaching in the cat. Exp Brain Res 102(3):379–392

    Article  CAS  PubMed  Google Scholar 

  • Martin JH, Choy M, Pullman S, Meng Z (2004) Corticospinal system development depends on motor experience. J Neurosci 24(9):2122–2132

    Article  CAS  PubMed  Google Scholar 

  • Martin JH, Friel KM, Salimi I, Chakrabarty S (2007) Activity- and use-dependent plasticity of the developing corticospinal system. Neurosci Biobehav Rev 31(8):1125–1135

    Article  PubMed  Google Scholar 

  • McCrea DA, Rybak IA (2007) Modeling the mammalian locomotor CPG: insights from mistakes and perturbations. Prog Brain Res 165:235–253

    Article  PubMed  Google Scholar 

  • McFarland DJ, Houston A (1981) Quantitative ethology: the state space approach. Pitman, London

    Google Scholar 

  • McGill SM (1997) The biomechanics of low back injury: implications on current practice in industry and the clinic. J Biomech 30(5):465–475

    Article  CAS  PubMed  Google Scholar 

  • Mussa-Ivaldi FA (1992) From basis functions to basis fields: Using vector primitives to capture vector patterns. Biol Cybern 67:479–489

    Article  CAS  PubMed  Google Scholar 

  • Mussa-Ivaldi FA, Bizzi E (2000) Motor learning through the combination of primitives. Philos Trans R Soc Lond B Biol Sci 355(1404):1755–1769

    Article  CAS  PubMed  Google Scholar 

  • Mussa-Ivaldi FA, Giszter SF (1992) Vector field approximation: a computational paradigm for motor control and learning. Biol Cybern 67:491–500

    Article  CAS  PubMed  Google Scholar 

  • Mussa-Ivaldi FA, Giszter SF, Bizzi E (1994) Linear combination of primitives in vertebrate motor control. Proc Natl Acad Sci USA 91:7534–7538

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa KC, Anderson CW, Deban SM, O’Reilly JC (1992) The evolution of neural circuits controlling feeding behavior in frogs. Brain Behav Evol 40(2–3):125–140

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan PB (2000) Lumbar segmental ‘instability’: clinical presentation and specific stabilizing exercise management. Man Ther 5(1):2–12

    Article  PubMed  Google Scholar 

  • O’Sullivan P, Twomey L, Allison G, Sinclair J, Miller K (1997) Altered patterns of abdominal muscle activation in patients with chronic low back pain. Aust J Physiother 43(2):91–98

    PubMed  Google Scholar 

  • O’Sullivan PB, Twomey L, Allison GT (1998) Altered abdominal muscle recruitment in patients with chronic back pain following a specific exercise intervention. J Ortho Sports Phys Ther 27(2):114–124

    Google Scholar 

  • Pang MY, Lam T, Yang JF (2003) Infants adapt their stepping to repeated trip-inducing stimuli. J Neurophysiol 90(4):2731–2740

    Article  PubMed  Google Scholar 

  • Panjabi MM (1992) The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord 5(4):383–389 discussion

    Article  CAS  PubMed  Google Scholar 

  • Pengel LH, Herbert RD, Maher CG, Refshauge KM (2003) Acute low back pain: systematic review of its prognosis. BMJ 327(7410):323

    Article  PubMed  Google Scholar 

  • Pigliucci M, Kaplan J (2000) The fall and rise of Dr Pangloss: adaptationism and the Spandrels paper 20 years later. Trends Ecol Evol 15(2):66–70

    Article  PubMed  Google Scholar 

  • Polit A, Bizzi E (1979) Characteristics of motor programs underlying arm movements in monkeys. J Neurophysiol 42(1 Pt 1):183–194

    CAS  PubMed  Google Scholar 

  • Poppele R, Bosco G (2003) Sophisticated spinal contributions to motor control. Trends Neurosci 26(5):269–276

    Article  CAS  PubMed  Google Scholar 

  • Prinz AA (2006) Insights from models of rhythmic motor systems. Curr Opin Neurobiol 16(6):615–620

    Article  CAS  PubMed  Google Scholar 

  • Quevedo J, Stecina K, Gosgnach S, McCrea DA (2005) Stumbling corrective reaction during fictive locomotion in the cat. J Neurophysiol 94(3):2045–2052

    Article  PubMed  Google Scholar 

  • Radebold A, Cholewicki J, Panjabi MM, Patel TC (2000) Muscle response pattern to sudden trunk loading in healthy individuals and in patients with chronic low back pain. Spine 25(8):947–954

    Article  CAS  PubMed  Google Scholar 

  • Radebold A, Cholewicki J, Polzhofer GK, Greene HS (2001) Impaired postural control of the lumbar spine is associated with delayed muscle response times in patients with chronic idiopathic low back pain. Spine 26(7):724–730

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen-Barr E, Nilsson-Wikmar L, Arvidsson I (2003) Stabilizing training compared with manual treatment in sub-acute and chronic low-back pain. Man Ther 8(4):233–241

    Article  CAS  PubMed  Google Scholar 

  • Reeves NP, Cholewicki J, Milner T, Lee AS (2008) Trunk antagonist co-activation is associated with impaired neuromuscular performance. Exp Brain Res 188(3):457–463

    Article  CAS  PubMed  Google Scholar 

  • Richardson A, Tresch M, Bizzi E, Slotine JJ (2005) Stability analysis of nonlinear muscle dynamics using contraction theory. Conf Proc IEEE Eng Med Biol Soc 5:4986–4989

    PubMed  Google Scholar 

  • Rogers EL, Granata KP (2006) Disturbed paraspinal reflex following prolonged flexion-relaxation and recovery. Spine 31(7):839–845

    Article  PubMed  Google Scholar 

  • Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N (2002) Smoothness during stroke recovery. J Neurosci 22(18):8297–8304

    CAS  PubMed  Google Scholar 

  • Rokni U, Richardson AG, Bizzi E, Seung HS (2007) Motor learning with unstable neural representations. Neuron 54(4):653–666

    Article  CAS  PubMed  Google Scholar 

  • Rossignol S (2006) Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals. Philos Trans R Soc Lond B Biol Sci 361(1473):1647–1671

    Article  CAS  PubMed  Google Scholar 

  • Saal JA, Saal JS (1989) Nonoperative treatment of herniated lumbar intervertebral disc with radiculopathy. An outcome study. Spine 14(4):431–437

    Article  CAS  PubMed  Google Scholar 

  • Sanger TD (1994) Optimal unsupervised motor learning for dimensionality reduction of nonlinear control systems. IEEE Trans Neural Netw 5(6):965–973

    Article  CAS  PubMed  Google Scholar 

  • Sanger TD (2000) Human arm movements described by a low-dimensional superposition of principal components. J Neurosci 20(3):1066–1072

    CAS  PubMed  Google Scholar 

  • Sanger TD (2004) Failure of motor learning for large initial errors. Neural Comput 16(9):1873–1886

    Article  PubMed  Google Scholar 

  • Schaal S, Ijspeert A, Billard A (2003) Computational approaches to motor learning by imitation. Philos Trans R Soc Lond B Biol Sci 358(1431):537–547

    Article  PubMed  Google Scholar 

  • Schilling N, Arnold D, Wagner H, Fischer MS (2005) Evolutionary aspects and muscular properties of the trunk–implications for human low back pain. Pathophysiology 12(4):233–242

    Article  PubMed  Google Scholar 

  • Schouenborg J (2004) Learning in sensorimotor circuits. Curr Opin Neurobiol 14(6):693–697

    Article  CAS  PubMed  Google Scholar 

  • Scott SH (2008) Inconvenient truths about neural processing in primary motor cortex. J Physiol 586(5):1217–1224

    Article  CAS  PubMed  Google Scholar 

  • Scott SH, Loeb GE (1994) The computation of position sense from spindles in mono- and multiarticular muscles. J Neurosci 14(12):7529–7540

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14(5 Pt 2):3208–3224

    CAS  PubMed  Google Scholar 

  • Sherrington CS (1961) The integrative action of the nervous system. Yale University Press, New Haven

    Google Scholar 

  • Silfies SP, Squillante D, Maurer P, Westcott S, Karduna AR (2005) Trunk muscle recruitment patterns in specific chronic low back pain populations. Clin Biomech 20(5):465–473

    Article  Google Scholar 

  • Silfies SP, Bhattacharya A, Biely S, Smith S, Giszter S (2008) Trunk control during standing reach: a dynamical system analysis of movement strategies in patients with mechanical low back pain. Gait Posture 29(3):370–376

    Article  PubMed  Google Scholar 

  • Silfies SP, Hart CB, Cannella M, Giszter SF (2009) Task-independent and task-specific trunk muscle synergies are recruited in bending and reaching. In: Proceedings of the international society of posture and gait research, Bologna, Italy, pp 285–286

  • Silfies SP, Mehta R, Smith SS, Karduna AR (2009b) Differences in feedforward trunk muscle activity in subgroups of patients with mechanical low back pain. Arch Phys Med Rehabil 90:1159–1169

    Article  PubMed  Google Scholar 

  • Slotine JJ, Lohmiller W (2001) Modularity, evolution, and the binding problem: a view from stability theory. Neural Netw 14(2):137–145

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, Carlson-Kuhta P (1995) Unexpected motor patterns for hindlimb muscles during slope walking in the cat. J Neurophysiol 74(5):2211–2215

    CAS  PubMed  Google Scholar 

  • Sosnik R, Hauptmann B, Karni A, Flash T (2004) When practice leads to co-articulation: the evolution of geometrically defined movement primitives. Exp Brain Res 156:422–438

    Article  PubMed  Google Scholar 

  • Stadler BM, Stadler PF, Wagner GP, Fontana W (2001) The topology of the possible: formal spaces underlying patterns of evolutionary change. J Theor Biol 213(2):241–274

    Article  CAS  PubMed  Google Scholar 

  • Stein PS (2005) Neuronal control of turtle hindlimb motor rhythms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(3):213–229

    Article  CAS  PubMed  Google Scholar 

  • Stein PS (2008) Motor pattern deletions and modular organization of turtle spinal cord. Brain Res Rev 57(1):118–124

    Google Scholar 

  • Stubbs M, Harris M, Solomonow M, Zhou B, Lu Y, Baratta RV (1998) Ligamento-muscular protective reflex in the lumbar spine of the feline. J Electromyogr Kinesiol 8(4):197–204

    Article  CAS  PubMed  Google Scholar 

  • Sumbre G, Fiorito G, Flash T, Hochner B (2006) Octopuses use a human-like strategy to control precise point-to-point arm movements. Curr Biol 16(8):767–772

    Article  CAS  PubMed  Google Scholar 

  • Tin C, Poon C-S (2005) Internal models in sensorimotor integration: perspectives from adaptive control theory. J Neural Eng 2:S147–S163

    Article  PubMed  Google Scholar 

  • Ting LH (2007) Dimensional reduction in sensorimotor systems: a framework for understanding muscle coordination of posture. Prog Brain Res 165:299–321

    Article  PubMed  Google Scholar 

  • Todorov E (2000) Direct cortical control of muscle activation in voluntary arm movements: a model. Nat Neurosci 3(4):391–398

    Article  CAS  PubMed  Google Scholar 

  • Todorov E (2002) Cosine tuning minimizes motor errors. Neural Comput 14(6):1233–1260

    Article  PubMed  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7(9):907–915

    Article  CAS  PubMed  Google Scholar 

  • Todorov E (2005) Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural Comput 17(5):1084–1108

    Article  PubMed  Google Scholar 

  • Todorov E, Ghahramani Z (2003) Unsupervised learning of sensory-motor primitives. In: Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society, IEEE, Cancun Mexico

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5(11):1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Todorov E, Li W, Pan X (2005) From task parameters to motor synergies: a hierarchical framework for approximately-optimal control of redundant manipulators. J Robot Syst 22(11):691–710

    Article  PubMed  Google Scholar 

  • Torres-Oviedo G, Ting LH (2007) Muscle synergies characterizing human postural responses. J Neurophysiol 98(4):2144–2156

    Article  PubMed  Google Scholar 

  • Torres-Oviedo G, Macpherson JM, Ting LH (2006) Muscle synergy organization is robust across a variety of postural perturbations. J Neurophysiol 96(3):1530–1546

    Article  PubMed  Google Scholar 

  • Tresch MC, Bizzi E (1999) Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation. Exp Brain Res 129(3):401–416

    Article  CAS  PubMed  Google Scholar 

  • Tresch M, Saltiel P, Bizzi E (1999) The construction of movement by the spinal cord. Nat Neurosci 2:162–167

    Article  CAS  PubMed  Google Scholar 

  • Tresch MC, Cheung VC, d’Avella A (2006) Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J Neurophysiol 5(4):2199–2212

    Google Scholar 

  • Valero-Cuevas FJ (2009) A mathematical approach to the mechanical capabilities of limbs and fingers. Adv Exp Med Biol 629:619–633

    Article  PubMed  Google Scholar 

  • Valero-Cuevas FJ, Yi JW, Brown D, McNamara RV 3rd, Paul C, Lipson H (2007) The tendon network of the fingers performs anatomical computation at a macroscopic scale. IEEE Trans Biomed Eng 54(6 Pt 2):1161–1166

    Article  PubMed  Google Scholar 

  • Valero-Cuevas FJ, Venkadesan M, Todorov E (2009) Structured variability of muscle activations supports the minimal intervention principle of motor control. J Neurophysiol 102(1):59–68

    Article  PubMed  Google Scholar 

  • Van Dieen JH, Cholewicki J, Radebold A (2003) Trunk muscle recruitment patterns in patients with low back pain enhance the stability of the lumbar spine. Spine 28(8):834–841

    Article  PubMed  Google Scholar 

  • Venkadesan M, Valero-Cuevas FJ (2008) Neural control of motion-to-force transitions with the fingertip. J Neurosci 28(6):1366–1373

    Article  CAS  PubMed  Google Scholar 

  • Viviani P, Terzuolo C (1982) Trajectory determines movement dynamics. Neuroscience 7(2):431–437

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP, Mezey J, Calabretta R (2005) Natural selection and the origin of modules. In: Callebaut W, Rasskin-Gutman D (eds) Modularity: understanding the development and evolution of natural complex systems. MIT Press, Cambridge, pp 33–50

    Google Scholar 

  • Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8(12):921–931

    Article  CAS  PubMed  Google Scholar 

  • Wainwright PC (2002) Evolution of feeding motor patterns in vertebrates. Curr Op Neurobiol 12:691–695

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Slotine JJ (2005) On partial contraction analysis for coupled nonlinear oscillators. Biol Cybern 92(1):38–53

    Article  PubMed  Google Scholar 

  • Welch JJ, Waxman D (2003) Modularity and the cost of complexity. Evolution 57:1723–1734

    PubMed  Google Scholar 

  • Wolpaw JR (2007) Spinal cord plasticity in acquisition and maintenance of motor skills. Acta Physiol (Oxf) 189(2):155–169

    Article  CAS  Google Scholar 

  • Wolpaw JR, Carp JS (1993) Adaptive plasticity in the spinal cord. Adv Neurol 59:163–174

    CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Flanagan JR (2001) Perspectives and problems in motor learning. Trends Cogn Sci 5(11):487–494

    Article  PubMed  Google Scholar 

  • Wyeth RC, Willows AO (2006) Field behavior of the nudibranch mollusc Tritonia diomedea. Biol Bull 210(2):81–96

    Article  PubMed  Google Scholar 

  • Zafeiriou DI (2004) Primitive reflexes and postural reactions in the neurodevelopmental examination. Pediatr Neurol 31(1):1–8

    Article  PubMed  Google Scholar 

  • Zedka M, Prochazka A, Knight B, Gillard D, Gauthier M (1999) Voluntary and reflex control of human back muscles during induced pain. J Physiol 520(Pt 2):591–604

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon F. Giszter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giszter, S.F., Hart, C.B. & Silfies, S.P. Spinal cord modularity: evolution, development, and optimization and the possible relevance to low back pain in man. Exp Brain Res 200, 283–306 (2010). https://doi.org/10.1007/s00221-009-2016-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-2016-x

Keywords

Navigation