Skip to main content
Log in

Reelin deficiency causes granule cell dispersion in epilepsy

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Cortical migration defects are often associated with epilepsy. In mesial temporal lobe epilepsy (MTLE), granule cell dispersion (GCD), a migration defect of dentate granule cells, is frequently observed. Little is known how GCD develops and to which extent it contributes to the development of seizure activity. Since the reelin-deficient reeler mouse mutant shows a similar migration defect of dentate cells, we performed a series of studies investigating whether reelin deficiency is involved in GCD development. We show that in MTLE patients and in a mouse model of MTLE, the development of GCD correlates with a loss of the extracellular matrix protein reelin. In addition, we present evidence that GCD occurs in the absence of neurogenesis, thus representing a displacement of mature neurons due to a reelin deficiency. Accordingly, antibody blockade of reelin function in naïve, adult mice induced GCD. Finally, we show that GCD formation can be prevented by infusion of exogenous reelin. In summary, these studies show that in epilepsy reelin dysfunction causes GCD development and that reelin is important for the maintenance of layered structures in the adult brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong DD (1993) The neuropathology of temporal lobe epilepsy. J Neuropathol Exp Neurol 52:433–443

    Article  CAS  PubMed  Google Scholar 

  • Blümcke I, Schewe JC, Normann S, Brustle O, Schramm J, Elger CE, Wiestler OD (2001) Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus 11:311–321

    Article  PubMed  Google Scholar 

  • Blümcke I, Thom M, Wiestler OD (2002) Ammon’s horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol 12:199–211

    PubMed  Google Scholar 

  • Bouilleret V, Ridoux V, Depaulis A, Marescaux C, Nehlig A, Le Gal La Salle G (1999) Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience 89:717–729

    Article  CAS  PubMed  Google Scholar 

  • Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10

    Article  CAS  PubMed  Google Scholar 

  • Chai X, Förster E, Zhao S, Bock HH, Frotscher M (2009) Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci 29:288–299

    Article  CAS  PubMed  Google Scholar 

  • Cooper JA (2008) A mechanism for inside-out lamination in the neocortex. Trends Neurosci 31:113–119

    Article  CAS  PubMed  Google Scholar 

  • Crespel A, Rigau V, Coubes P, Rousset MC, de Bock F, Okano H, Baldy-Moulinier M, Bockaert J, Lerner-Natoli M (2005) Increased number of neural progenitors in human temporal lobe epilepsy. Neurobiol Dis 19:436–450

    Article  CAS  PubMed  Google Scholar 

  • D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723

    Article  PubMed  Google Scholar 

  • D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24:471–479

    Article  PubMed  Google Scholar 

  • des Portes V, Pinard JM, Billuart P, Vinet MC, Koulakoff A, Carrie A, Gelot A, Dupuis E, Motte J, Berwald-Netter Y, Catala M, Kahn A, Beldjord C, Chelly J (1998) A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92:51–61

    Article  CAS  PubMed  Google Scholar 

  • Drakew A, Deller T, Heimrich B, Gebhardt C, Del Turco D, Tielsch A, Förster E, Herz J, Frotscher M (2002) Dentate granule cells in reeler mutants and VLDLR and ApoER2 knockout mice. Exp Neurol 176:12–24

    Article  CAS  PubMed  Google Scholar 

  • Eksioglu YZ, Scheffer IE, Cardenas P, Knoll J, DiMario F, Ramsby G, Berg M, Kamuro K, Berkovic SF, Duyk GM, Parisi J, Huttenlocher PR, Walsh CA (1996) Periventricular heterotopia: an X-linked dominant epilepsy locus causing aberrant cerebral cortical development. Neuron 16:77–87

    Article  CAS  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Fahrner A, Kann G, Flubacher A, Heinrich C, Freiman TM, Zentner J, Frotscher M, Haas CA (2007) Granule cell dispersion is not accompanied by enhanced neurogenesis in temporal lobe epilepsy patients. Exp Neurol 203:320–332

    Article  PubMed  Google Scholar 

  • Falconer DS (1951) Two new mutants, Trembler and Reeler, with neurological actions in the house mouse. J Genet 50:192–201

    Article  Google Scholar 

  • Fauser S, Schulze-Bonhage A (2006) Epileptogenicity of cortical dysplasia in temporal lobe dual pathology: an electrophysiological study with invasive recordings. Brain 129:82–95

    Article  PubMed  Google Scholar 

  • Förster E, Zhao S, Frotscher M (2006) Laminating the hippocampus. Nat Rev Neurosci 7:259–267

    Article  PubMed  CAS  Google Scholar 

  • Frotscher M (1998) Cajal-Retzius cells, Reelin, and the formation of layers. Curr Opin Neurobiol 8:570–575

    Article  CAS  PubMed  Google Scholar 

  • Frotscher M, Haas C, Förster E (2003) Reelin controls granule cell migration in the dentate gyrus by acting on the radial glia scaffold. Cereb Cortex 13:634–640

    Article  PubMed  Google Scholar 

  • Gleeson JG, Walsh CA (2000) Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci 23:352–359

    Article  CAS  PubMed  Google Scholar 

  • Gray WP, Sundstrom LE (1998) Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res 790:52–59

    Article  CAS  PubMed  Google Scholar 

  • Haas CA, Dudeck O, Kirsch M, Huszka C, Kann G, Pollak S, Zentner J, Frotscher M (2002) Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci 22:5797–5802

    CAS  PubMed  Google Scholar 

  • Heinrich C, Nitta N, Flubacher A, Muller M, Fahrner A, Kirsch M, Freiman T, Suzuki F, Depaulis A, Frotscher M, Haas CA (2006) Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci 26:4701–4713

    Article  CAS  PubMed  Google Scholar 

  • Hirotsune S, Takahara T, Sasaki N, Hirose K, Yoshiki A, Ohashi T, Kusakabe M, Murakami Y, Muramatsu M, Watanabe S, Nakao K, Katsuki M, Hayashizaki Y (1995) The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nat Genet 10:77–83

    Article  CAS  PubMed  Google Scholar 

  • Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO, Martin ND, Walsh CA (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26:93–96

    Article  CAS  PubMed  Google Scholar 

  • Houser CR (1990) Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res 535:195–204

    Article  CAS  PubMed  Google Scholar 

  • Howell BW, Hawkes R, Soriano P, Cooper JA (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389:733–737

    Article  CAS  PubMed  Google Scholar 

  • Howell BW, Herrick TM, Cooper JA (1999) Reelin-induced tryosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev 13:643–648

    Article  CAS  PubMed  Google Scholar 

  • Jessberger S, Romer B, Babu H, Kempermann G (2005) Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol 196:342–351

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama Y, Terashima T (2009) Developmental anatomy of reeler mutant mouse. Dev Growth Differ 51:271–286

    Article  CAS  PubMed  Google Scholar 

  • Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452

    Article  CAS  PubMed  Google Scholar 

  • Kralic JE, Ledergerber DA, Fritschy JM (2005) Disruption of the neurogenic potential of the dentate gyrus in a mouse model of temporal lobe epilepsy with focal seizures. Eur J Neurosci 22:1916–1927

    Article  PubMed  Google Scholar 

  • Lurton D, Sundstrom L, Brana C, Bloch B, Rougier A (1997) Possible mechanisms inducing granule cell dispersion in humans with temporal lobe epilepsy. Epilepsy Res 26:351–361

    Article  CAS  PubMed  Google Scholar 

  • Mathern GW, Leiphart JL, De Vera A, Adelson PD, Seki T, Neder L, Leite JP (2002) Seizures decrease postnatal neurogenesis and granule cell development in the human fascia dentata. Epilepsia 43(Suppl 5):68–73

    Article  PubMed  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  CAS  PubMed  Google Scholar 

  • Müller MC, Osswald M, Tinnes S, Haussler U, Jacobi A, Förster E, Frotscher M, Haas CA (2009) Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Exp Neurol 216:390–397

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Mikoshiba K, Miyata T, Kudo C, Ogawa M (1997) Disruption of hippocampal development in vivo by CR-50 mAb against reelin. Proc Natl Acad Sci USA 94:8196–8201

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, Ikenaka K, Yamamoto H, Mikoshiba K (1995) The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14:899–912

    Article  CAS  PubMed  Google Scholar 

  • Palmini A, Andermann F, Olivier A, Tampieri D, Robitaille Y (1991) Focal neuronal migration disorders and intractable partial epilepsy: results of surgical treatment. Ann Neurol 30:750–757

    Article  CAS  PubMed  Google Scholar 

  • Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738

    CAS  PubMed  Google Scholar 

  • Rakic P, Caviness VS Jr (1995) Cortical development: view from neurological mutants two decades later. Neuron 14:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234–246

    Article  PubMed  Google Scholar 

  • Riban V, Bouilleret V, Pham-Le BT, Fritschy JM, Marescaux C, Depaulis A (2002) Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience 112:101–111

    Article  CAS  PubMed  Google Scholar 

  • Rice DS, Curran T (2001) Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24:1005–1039

    Article  CAS  PubMed  Google Scholar 

  • Scharfman HE, Goodman JH, Sollas AL (2000) Granule-like neurons at the hilar/CA3 pyramidal cell border after status epilepticus and their synchrony with area CA3 pyramdial cells: functional implications of seizure-induced neurogenesis. J Neurosci 20:6144–6158

    CAS  PubMed  Google Scholar 

  • Sheldon M, Rice DS, D’Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice 389:730–733

    CAS  Google Scholar 

  • Soriano E, Del Rio JA (2005) The cells of Cajal-Retzius: still a mystery one century after. Neuron 46:389–394

    Article  CAS  PubMed  Google Scholar 

  • Stanfield BB, Cowan WM (1979) The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 185:393–422

    Article  CAS  PubMed  Google Scholar 

  • Stegen M, Young CC, Haas CA, Zentner J, Wolfart J (2009) Increased leak conductance in dentate gyrus granule cells of temporal lobe epilepsy patients with Ammon’s horn sclerosis. Epilepsia 50:646–653

    Article  PubMed  Google Scholar 

  • Suzuki F, Junier MP, Guilhem D, Sorensen JC, Onteniente B (1995) Morphogenetic effect of kainate on adult hippocampal neurons associated with a prolonged expression of brain-derived neurotrophic factor. Neuroscience 64:665–674

    Article  CAS  PubMed  Google Scholar 

  • Thom M, Martinian L, Williams G, Stoeber K, Sisodiya SM (2005) Cell proliferation and granule cell dispersion in human hippocampal sclerosis. J Neuropathol Exp Neurol 64:194–201

    PubMed  Google Scholar 

  • Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4:496–505

    Article  CAS  PubMed  Google Scholar 

  • Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all those who contributed with their time and talents to the studies reviewed in this article. In particular, we thank M. Müller, M. Osswald, C. Heinrich, U. Häussler, A. Jacobi, A. Fahrner, E. Förster, and S. Huber for their contributions. This work was supported by the Deutsche Forschungsgemeinschaft (SFB TR 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola A. Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, C.A., Frotscher, M. Reelin deficiency causes granule cell dispersion in epilepsy. Exp Brain Res 200, 141–149 (2010). https://doi.org/10.1007/s00221-009-1948-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1948-5

Keywords

Navigation