Skip to main content

Advertisement

Log in

Differential effects of TRPV channel block on polymodal activation of rat cutaneous nociceptors in vitro

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The capsaicin receptor TRPV1 is a polymodal sensory transducer molecule in the pain pathway. TRPV1 integrates noxious heat, tissue acidosis and chemical stimuli which are all known to cause pain. Studies on TRPV1-deficient mice suggest that TRPV1 is essential for acid sensing by nociceptors and for thermal hyperalgesia in inflammation of the skin, but not for transducing noxious heat. After TRPV1, other TRPV channels were cloned with polymodal properties and sensitivity to noxious heat, named TRPV2, TRPV3 and TRPV4. While TRPV3 and TRPV4 are predominantly warm sensors, TRPV2’s threshold is in the noxious range (>52°C). However, mice deficient of TRPV2 and TRPV1 or TRPV3 or TRPV4 show no major impairment of noxious heat sensing. Ruthenium red, a water soluble polycationic dye, was found to block the pore of the capsaicin-operated cation channel TRPV1 thus interfering with all polymodal ways of TRPV1 activation. Antagonistic effects of the dye were subsequently described on many other TRP-channels, especially on the heat-sensitive ones of the vanilloid family, TRPV2, TRPV3 and TRPV4. In this study, we used the rat skin-nerve preparation to define the possible actions of ruthenium red on the proton, capsaicin and noxious heat activation of native polymodal nociceptors. Ruthenium red was found to suppress only the capsaicin-induced excitation and desensitization of these nerve endings. On the contrary, the proton and heat-induced discharge responses of the single fibres were not influenced. Additionally, we found that the dye concentration dependently increases the excitability of the neurons resulting in ongoing activity and burstlike discharge. These differential results are discussed in the light of recent findings from transgenic mouse models, and they point once more to major (pharmacological) differences between cellular models of nociception, including spinal ganglion neuron and transfected cell lines, and the real native nerve endings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RuR:

Ruthenium red

TRPV:

Transient receptor potential receptor, subtype vanilloid

DRG:

Dorsal root ganglia

SIF:

Synthetic interstitial fluid

CM:

Mechanosensitive C-fibre

CMH:

Mechano-heat-sensitive C-fibre

CMC:

Mechano-cold-sensitive C-fibre

References

  • Amann R, Maggi CA (1991) Ruthenium red as a capsaicin antagonist. Life Sci 49:849–856

    Article  PubMed  CAS  Google Scholar 

  • Amann R, Donnerer J, Lembeck F (1990) Activation of primary afferent neurons by thermal stimulation. Influence of ruthenium red. Naunyn Schmiedebergs Arch Pharmacol 341:108–113

    PubMed  CAS  Google Scholar 

  • Babes A, Amuzescu B, Krause U, Scholz A, Flonta ML, Reid G (2002) Cooling inhibits capsaicin-induced currents in cultured rat dorsal root ganglion neurones. Neurosci Lett 317:131–134

    Article  PubMed  CAS  Google Scholar 

  • Baumann TK, Chaudhary P, Martenson ME (2004) Background potassium channel block and TRPV1 activation contribute to proton depolarization of sensory neurons from humans with neuropathic pain. Eur J NeuroSci 19:1343–1351

    Article  PubMed  Google Scholar 

  • Bessou P, Perl ER (1969) Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32:1025–1043

    PubMed  CAS  Google Scholar 

  • Bevan S, Geppetti P (1994) Protons: small stimulants of capsaicin-sensitive sensory nerves. Trends Neurosci 17:509–512

    Article  PubMed  CAS  Google Scholar 

  • Bevan S, Yeats J (1991) Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurones. J Physiol 433:145–161

    PubMed  CAS  Google Scholar 

  • Bevan S, Hothi S, Hughes G, James IF, Rang HP, Shah K, Walpole CS, Yeats JC (1992) Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br J Pharmacol 107:544–552

    PubMed  CAS  Google Scholar 

  • Bolser DC, Aziz SM, Chapman RW (1991) Ruthenium red decreases capsaicin and citric acid-induced cough in guinea pigs. Neurosci Lett 126:131–133

    Article  PubMed  CAS  Google Scholar 

  • Bretag AH (1969) Synthetic interstitial fluid for isolated mammalian tissue. Life Sci 8:319–329

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    Article  PubMed  CAS  Google Scholar 

  • Cesare P, McNaughton P (1996) A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci USA 93:15435–15439

    Article  PubMed  CAS  Google Scholar 

  • Charuk JH, Pirraglia CA, Reithmeier RA (1990) Interaction of ruthenium red with Ca2(+)-binding proteins. Anal Biochem 188:123–131

    Article  PubMed  CAS  Google Scholar 

  • Cibulsky SM, Sather WA (1999) Block by ruthenium red of cloned neuronal voltage-gated calcium channels. J Pharmacol Exp Ther 289:1447–1453

    PubMed  CAS  Google Scholar 

  • Czirjak G, Enyedi P (2003) Ruthenium red inhibits TASK-3 potassium channel by interconnecting glutamate 70 of the two subunits. Mol Pharmacol 63:646–652

    Article  PubMed  CAS  Google Scholar 

  • Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187

    Article  PubMed  CAS  Google Scholar 

  • Docherty RJ, Yeats JC, Bevan S, Boddeke HW (1996) Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch 431:828–837

    PubMed  CAS  Google Scholar 

  • Dorrscheidt-Kafer M, Grocki K (1978) The effect of ruthenium red and its interaction with membrane-bound sialic acid on contraction threshold in frog skeletal muscle [proceedings]. J Physiol 284:52

    Google Scholar 

  • Dray A, Bettaney J, Forster P (1989) Capsaicin desensitization of peripheral nociceptive fibres does not impair sensitivity to other noxious stimuli. Neurosci Lett 99:50–54

    Article  PubMed  CAS  Google Scholar 

  • Dray A, Forbes CA, Burgess GM (1990) Ruthenium red blocks the capsaicin-induced increase in intracellular calcium and activation of membrane currents in sensory neurones as well as the activation of peripheral nociceptors in vitro. Neurosci Lett 110:52–59

    Article  PubMed  CAS  Google Scholar 

  • Fischer MJ, Reeh PW, Sauer SK (2003) Proton-induced calcitonin gene-related peptide release from rat sciatic nerve axons, in vitro, involving TRPV1. Eur J NeuroSci 18:803–810

    Article  PubMed  Google Scholar 

  • Fitzgerald M, Woolf CJ (1982) The time course and specificity of the changes in the behavioural and dorsal horn cell responses to noxious stimuli following peripheral nerve capsaicin treatment in the rat. Neuroscience 7:2051–2056

    Article  PubMed  CAS  Google Scholar 

  • Forster C, Handwerker HO (1990) Automatic classification and analysis of microneurographic spike data using a PC/AT. J Neurosci Methods 31:109–118

    Article  PubMed  CAS  Google Scholar 

  • Foster RW, Ramage AG (1981) The action of some chemical irritants on somatosensory receptors of the cat. Neuropharmacology 20:191–198

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martinez C, Morenilla-Palao C, Planells-Cases R, Merino JM, Ferrer-Montiel A (2000) Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J Biol Chem 275:32552–32558

    Article  PubMed  CAS  Google Scholar 

  • Geppetti P, Tramontana M, Patacchini R, Del Bianco E, Santicioli P, Maggi CA (1990) Neurochemical evidence for the activation of the ‘efferent’ function of capsaicin-sensitive nerves by lowering of the pH in the guinea-pig urinary bladder. Neurosci Lett 114:101–106

    Article  PubMed  CAS  Google Scholar 

  • Geppetti P, Del Bianco E, Patacchini R, Santicioli P, Maggi CA, Tramontana M (1991) Low pH-induced release of calcitonin gene-related peptide from capsaicin-sensitive sensory nerves: mechanism of action and biological response. Neuroscience 41:295–301

    Article  PubMed  CAS  Google Scholar 

  • Guenther S, Reeh PW, Kress M (1999) Rises in [Ca2 +]i mediate capsaicin- and proton-induced heat sensitization of rat primary nociceptive neurons. Eur J NeuroSci 11:3143–3150

    Article  PubMed  CAS  Google Scholar 

  • Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414

    PubMed  CAS  Google Scholar 

  • Jancso G, Karcsu S, Kiraly E, Szebeni A, Toth L, Bacsy E, Joo F, Parducz A (1984) Neurotoxin induced nerve cell degeneration: possible involvement of calcium. Brain Res 295:211–216

    Article  PubMed  CAS  Google Scholar 

  • Kessler W, Kirchhoff C, Reeh PW, Handwerker HO (1992) Excitation of cutaneous afferent nerve endings in vitro by a combination of inflammatory mediators and conditioning effect of substance P. Exp Brain Res 91:467–476

    Article  PubMed  CAS  Google Scholar 

  • Kichko TI, Reeh PW (2004) Why cooling is beneficial: non-linear temperature-dependency of stimulated iCGRP release from isolated rat skin. Pain 110:215–219

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Bang H, Kim D (2000) TASK-3, a new member of the tandem pore K(+) channel family. J Biol Chem 275:9340–9347

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff C, Leah JD, Jung S, Reeh PW (1992) Excitation of cutaneous sensory nerve endings in the rat by 4-aminopyridine and tetraethylammonium. J Neurophysiol 67:125–131

    PubMed  CAS  Google Scholar 

  • Kirschstein T, Greffrath W, Busselberg D, Treede RD (1999) Inhibition of rapid heat responses in nociceptive primary sensory neurons of rats by vanilloid receptor antagonists. J Neurophysiol 82:2853–2860

    PubMed  CAS  Google Scholar 

  • Konnerth A, Lux HD, Morad M (1987) Proton-induced transformation of calcium channel in chick dorsal root ganglion cells. J Physiol 386:603–633

    PubMed  CAS  Google Scholar 

  • Kress M, Fetzer S, Reeh PW, Vyklicky L (1996) Low pH facilitates capsaicin responses in isolated sensory neurons of the rat. Neurosci Lett 211:5–8

    Article  PubMed  CAS  Google Scholar 

  • Krishtal OA, Pidoplichko VI (1980) A receptor for protons in the nerve cell membrane. Neuroscience 5:2325–2327

    Article  PubMed  CAS  Google Scholar 

  • Liang YF, Haake B, Reeh PW (2001) Sustained sensitization and recruitment of rat cutaneous nociceptors by bradykinin and a novel theory of its excitatory action. J Physiol 532:229–239

    Article  PubMed  CAS  Google Scholar 

  • Lynn B (1979) The heat sensitization of polymodal nociceptors in the rabbit and its independence of the local blood flow. J Physiol 287:493–507

    PubMed  CAS  Google Scholar 

  • Lynn B, Carpenter SE (1982) Primary afferent units from the hairy skin of the rat hind limb. Brain Res 238:29–43

    Article  PubMed  CAS  Google Scholar 

  • Ma J (1993) Block by ruthenium red of the ryanodine-activated calcium release channel of skeletal muscle. J Gen Physiol 102:1031–1056

    Article  PubMed  CAS  Google Scholar 

  • Maggi CA, Patacchini R, Santicioli P, Giuliani S, Geppetti P, Meli A (1988) Protective action of ruthenium red toward capsaicin desensitization of sensory fibers. Neurosci Lett 88:201–205

    Article  PubMed  CAS  Google Scholar 

  • Marin-Burgin A, Reppenhagen S, Klusch A, Wendland JR, Petersen M (2000) Low-threshold heat response antagonized by capsazepine in chick sensory neurons, which are capsaicin-insensitive. Eur J NeuroSci 12:3560–3566

    Article  PubMed  CAS  Google Scholar 

  • Massieu L, Tapia R (1988) Relationship of dihydropyridine binding sites with calcium-dependent neurotransmitter release in synaptosomes. J Neurochem 51:1184–1189

    Article  PubMed  CAS  Google Scholar 

  • Moore CL (1971) Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun 42:298–305

    Article  PubMed  CAS  Google Scholar 

  • Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472

    Article  PubMed  CAS  Google Scholar 

  • Ness TJ, Gebhart GF (1988) Characterization of neurons responsive to noxious colorectal distension in the T13-L2 spinal cord of the rat. J Neurophysiol 60:1419–1438

    PubMed  CAS  Google Scholar 

  • Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049

    Article  PubMed  CAS  Google Scholar 

  • Person RJ, Kuhn JA (1979) Depression of spontaneous and ionophore-induced transmitter release by ruthenium red at the neuromuscular junction. Brain Res Bull 4:669–674

    Article  PubMed  CAS  Google Scholar 

  • Pethö G, Izydorczyk I, Reeh PW (2004) Effects of TRPV1 receptor antagonists on stimulated iCGRP release from isolated skin of rats and TRPV1 mutant mice. Pain 109:284–290

    Article  PubMed  Google Scholar 

  • Reeh PW (1988) Sensory receptors in a mammalian skin-nerve in vitro preparation. Prog Brain Res 74:271–276

    Article  PubMed  CAS  Google Scholar 

  • Reid G, Flonta M (2001) Cold transduction by inhibition of a background potassium conductance in rat primary sensory neurones. Neurosci Lett 297:171–174

    Article  PubMed  CAS  Google Scholar 

  • Savidge JR, Ranasinghe SP, Rang HP (2001) Comparison of intracellular calcium signals evoked by heat and capsaicin in cultured rat dorsal root ganglion neurons and in a cell line expressing the rat vanilloid receptor, VR1. Neuroscience 102:177–184

    Article  PubMed  CAS  Google Scholar 

  • Steen KH, Reeh PW (1993) Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neurosci Lett 154:113–116

    Article  PubMed  CAS  Google Scholar 

  • Steen KH, Reeh PW, Anton F, Handwerker HO (1992) Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J Neurosci 12:86–95

    PubMed  CAS  Google Scholar 

  • Steen KH, Wegner H, Reeh PW (1999) The pH response of rat cutaneous nociceptors correlates with extracellular [Na+] and is increased under amiloride. Eur J NeuroSci 11:2783–2792

    Article  PubMed  CAS  Google Scholar 

  • Stimers JR, Byerly L (1982) Slowing of sodium current inactivation by ruthenium red in snail neurons. J Gen Physiol 80:485–497

    Article  PubMed  CAS  Google Scholar 

  • Szallasi A, Blumberg PM (1996) Vanilloid receptors: new insights enhance potential as a therapeutic target. Pain 68:195–208

    Article  PubMed  CAS  Google Scholar 

  • Szolcsanyi J (2004) Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides 38:377–384

    Article  PubMed  CAS  Google Scholar 

  • Szolcsanyi J, Anton F, Reeh PW, Handwerker HO (1988) Selective excitation by capsaicin of mechano-heat sensitive nociceptors in rat skin. Brain Res 446:262–268

    Article  PubMed  CAS  Google Scholar 

  • Szolcsanyi J, Szallasi A, Szallasi Z, Joo F, Blumberg PM (1990) Resiniferatoxin: an ultrapotent selective modulator of capsaicin-sensitive primary afferent neurons. J Pharmacol Exp Ther 255:923–928

    PubMed  CAS  Google Scholar 

  • Takahashi N, Mizuno Y, Kozai D, Yamamoto S, Kiyonaka S, Shibata T, Uchida K, Mori Y (2008) Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels (Austin) 2:287–298

    Google Scholar 

  • Tapia R, Meza-Ruiz G (1977) Inhibition by ruthenium red of the calcium-dependent release of [3H]GABA in synaptosomal fractions. Brain Res 126:160–166

    Article  PubMed  CAS  Google Scholar 

  • Tapia R, Velasco I (1997) Ruthenium red as a tool to study calcium channels, neuronal death and the function of neural pathways. Neurochem Int 30:137–147

    Article  PubMed  CAS  Google Scholar 

  • Tapia R, Arias C, Morales E (1985) Binding of lanthanum ions and ruthenium red to synaptosomes and its effects on neurotransmitter release. J Neurochem 45:1464–1470

    Article  PubMed  CAS  Google Scholar 

  • Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  PubMed  CAS  Google Scholar 

  • Vyklicky L, Knotkova-Urbancova H, Vitaskova Z, Vlachova V, Kress M, Reeh PW (1998) Inflammatory mediators at acidic pH activate capsaicin receptors in cultured sensory neurons from newborn rats. J Neurophysiol 79:670–676

    PubMed  CAS  Google Scholar 

  • Weidner C, Schmelz M, Schmidt R, Hansson B, Handwerker HO, Torebjork HE (1999) Functional attributes discriminating mechano-insensitive and mechano-responsive C nociceptors in human skin. J Neurosci 19:10184–10190

    PubMed  CAS  Google Scholar 

  • Wieraszko A (1986) Evidence that ruthenium red disturbs the synaptic transmission in the rat hippocampal slices through interacting with sialic acid residues. Brain Res 378:120–126

    Article  PubMed  CAS  Google Scholar 

  • Williams JT, Zieglgansberger W (1982) The acute effects of capsaicin on rat primary afferents and spinal neurons. Brain Res 253:125–131

    Article  PubMed  CAS  Google Scholar 

  • Wood JN, Winter J, James IF, Rang HP, Yeats J, Bevan S (1988) Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J Neurosci 8:3208–3220

    PubMed  CAS  Google Scholar 

  • Woodbury CJ, Zwick M, Wang S, Lawson JJ, Caterina MJ, Koltzenburg M, Albers KM, Koerber HR, Davis BM (2004) Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J Neurosci 24:6410–6415

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann K, Leffler A, Fischer MM, Messlinger K, Nau C, Reeh PW (2005) The TRPV1/2/3 activator 2-aminoethoxydiphenyl borate sensitizes native nociceptive neurons to heat in wildtype but not TRPV1 deficient mice. Neuroscience 135:1277–1284

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, Nau C, Wood JN, Reeh PW (2007) Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447:856–859

    Article  Google Scholar 

  • Zimmermann K, Hein A, Hager U, Kaczmarek JS, Turnquist B, Clapham DE, Reeh PW (2008) Phenotyping sensory nerve endings in vitro in the mouse. Nature Protocols (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

St. Pierre, M., Reeh, P.W. & Zimmermann, K. Differential effects of TRPV channel block on polymodal activation of rat cutaneous nociceptors in vitro. Exp Brain Res 196, 31–44 (2009). https://doi.org/10.1007/s00221-009-1808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1808-3

Keywords

Navigation