Skip to main content
Log in

Viewing the body modulates tactile receptive fields

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Tactile discrimination performance depends on the receptive field (RF) size of somatosensory cortical (SI) neurons. Psychophysical masking effects can reveal the RF of an idealized “virtual” somatosensory neuron. Previous studies show that top–down factors strongly affect tactile discrimination performance. Here, we show that non-informative vision of the touched body part influences tactile discrimination by modulating tactile RFs. Ten subjects performed spatial discrimination between touch locations on the forearm. Performance was improved when subjects saw their forearm compared to viewing a neutral object in the same location. The extent of visual information was relevant, since restricted view of the forearm did not have this enhancing effect. Vibrotactile maskers were placed symmetrically on either side of the tactile target locations, at two different distances. Overall, masking significantly impaired discrimination performance, but the spatial gradient of masking depended on what subjects viewed. Viewing the body reduced the effect of distant maskers, but enhanced the effect of close maskers, as compared to viewing a neutral object. We propose that viewing the body improves functional touch by sharpening tactile RFs in an early somatosensory map. Top–down modulation of lateral inhibition could underlie these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alloway KD, Rosenthal P, Burton H (1989) Quantitative measurements of receptive field changes during antagonism of GABAergic transmission in primary somatosensory cortex of cats. Exp Brain Res 78:514–532

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Swadlow HA (2005) Thalamocortical specificity and the synthesis of sensory cortical receptive fields. J Neurophysiol 94:26–32

    Article  PubMed  Google Scholar 

  • Arzy S, Thut G, Mohr C, Michel CM, Blanke O (2006) Neural basis of embodiment: distinct contributions of temporoparietal junction and extrastriate body area. J Neurosci 26:8074–8081

    Article  PubMed  CAS  Google Scholar 

  • Astafiev SV, Stanley CM, Shulman GL, Corbetta M (2004) Extrastriate body area in human occipital cortex responds to the performance of motor actions. Nat Neurosci 7:542–548

    Article  PubMed  CAS  Google Scholar 

  • Brown PB, Koerber HR, Millecchia R (2004) From innervation density to tactile acuity: 1. Spatial representation. Brain Res 1011:14–32

    Article  PubMed  CAS  Google Scholar 

  • Craig JC (1989) Interference in localizing tactile stimuli. Percept Psychophys 45:343–355

    PubMed  CAS  Google Scholar 

  • Craig JC, Evans PM (1987) Vibrotactile masking and the persistence of tactual features. Percept Psychophys 42:309–317

    PubMed  CAS  Google Scholar 

  • DiCarlo JJ, Johnson KO, Hsiao SS (1998) Structure of receptive fields in area 3b of primary somatosensory cortex in the alert monkey. J Neurosci 18:2626–2645

    PubMed  CAS  Google Scholar 

  • Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science 293:2470–2473

    Article  PubMed  CAS  Google Scholar 

  • Dykes RW, Landry P, Metherate R, Hicks TP (1984) Functional role of GABA in cat primary somatosensory cortex: shaping receptive fields of cortical neurons. J Neurophysiol 52:1066–1093

    PubMed  CAS  Google Scholar 

  • Eimer M, Driver J (2001) Crossmodal links in endogenous and exogenous spatial attention: evidence from event-related brain potential studies. Neurosci Biobehav Rev 25:497–511

    Article  PubMed  CAS  Google Scholar 

  • Fiorio M, Haggard P (2005) Viewing the body prepares the brain for touch: effects of TMS over somatosensory cortex. Eur J Neurosci 22:773–777

    Article  PubMed  Google Scholar 

  • Forster B, Eimer M (2005) Vision and gaze direction modulate tactile processing in somatosensory cortex: evidence from event-related brain potentials. Exp Brain Res 165:8–18

    Article  PubMed  Google Scholar 

  • Freund HJ (2003) Somatosensory and motor disturbances in patients with parietal lobe lesions. Adv Neurol 93:179–193

    PubMed  Google Scholar 

  • Graziano MS, Cooke DF, Taylor CS (2000) Coding the location of the arm by sight. Science 290:1782–1786

    Article  PubMed  CAS  Google Scholar 

  • Haggard P (2006) Sensory neuroscience: from skin to object in the somatosensory cortex. Curr Biol 16:R884–886

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH, Merzenich MM, Killackey HP (1983) The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci 6:325–356

    Article  PubMed  CAS  Google Scholar 

  • Kennett S, Taylor-Clarke M, Haggard P (2001) Noninformative vision improves the spatial resolution of touch in humans. Curr Biol 11:1188–1191

    Article  PubMed  CAS  Google Scholar 

  • Laskin SE, Spencer WA (1979a) Cutaneous masking. I. Psychophysical observations on interactions of multipoint stimuli in man. J Neurophysiol 42:1048–1060

    PubMed  CAS  Google Scholar 

  • Laskin SE, Spencer WA (1979b) Cutaneous masking. II. Geometry of excitatory andinhibitory receptive fields of single units in somatosensory cortex of the cat. J Neurophysiol 42:1061–1082

    PubMed  CAS  Google Scholar 

  • Macaluso E, Driver J, van Velzen J, Eimer M (2005) Influence of gaze direction on crossmodal modulation of visual ERPS by endogenous tactile spatial attention. Brain Res Cogn Brain Res 23:406–417

    Article  PubMed  CAS  Google Scholar 

  • Penfield W, Rasmussen T (1950) The cerebral cortex of man. A clinical study of localization of function. MacMillan, New York

    Google Scholar 

  • Press C, Taylor-Clarke M, Kennett S, Haggard P (2004) Visual enhancement of touch in spatial body representation. Exp Brain Res 154:238–245

    Article  PubMed  Google Scholar 

  • Saxe R, Jamal N, Powell L (2006) My body or yours? The effect of visual perspective on cortical body representations. Cereb Cortex 16:178–182

    Article  PubMed  Google Scholar 

  • Taylor-Clarke M, Kennett S, Haggard P (2002) Vision modulates somatosensory cortical processing. Curr Biol 12:233–236

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Clarke M, Kennett S, Haggard P (2004) Persistence of visual-tactile enhancement in humans. Neurosci Lett 354:22–25

    Article  PubMed  CAS  Google Scholar 

  • Van Boven RW, Johnson KO (1994) The limit of tactile spatial resolution in humans: grating orientation discrimination at the lip, tongue, and finger. Neurology 44:2361–2366

    PubMed  Google Scholar 

  • Weinstein S (1968) Intensive and extensive aspects of tactile sensitivity as a function of body part, sex and laterality. In: Kenshalo DR (ed) The skin senses. Thomas, Springfield, pp 195–218

    Google Scholar 

  • Xing J, Gerstein GL (1996) Networks with lateral connectivity. I. Dynamic properties mediated by the balance of intrinsic excitation and inhibition. J Neurophysiol 75:184–199

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the BBSRC and the British Academy to PH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Haggard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haggard, P., Christakou, A. & Serino, A. Viewing the body modulates tactile receptive fields. Exp Brain Res 180, 187–193 (2007). https://doi.org/10.1007/s00221-007-0971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-0971-7

Keywords

Navigation