Skip to main content
Log in

Sensorimotor integration to cutaneous afferents in humans: the effect of the size of the receptive field

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Transcranial magnetic stimulation (TMS) can be used to study sensorimotor integration in humans non-invasively. Motor excitability has been found to be inhibited when afferent stimuli are given to a peripheral nerve and precede TMS at interstimulus intervals (ISIs) of 20–50 ms. This phenomenon has been referred to as short-latency afferent inhibition (SAI). To better understand the functional meaning of these phenomena, we examined the effect of the size of the receptive field on SAI to cutaneous afferents in upper-limb sensorimotor areas in humans. We examined the effect of the stimulation of the isolated right first (D1), second (D2) and third finger (D3), the right second and third finger together (D23) and the right first three fingers together (D123) on the amplitude of motor evoked potentials (MEPs) to TMS in hand and forearm muscles. We examined the right abductor pollicis brevis (APB), first dorsal interosseous (FDI), extensor carpi radialis (ECR) and flexor carpi radialis (FCR) muscles. Digital stimulation preceded TMS at ISIs of 20–50 ms. The effect of D2 stimulation was MEP inhibition (SAI), which was more marked and consistent in APB and FDI muscles than in ECR and FCR muscles. Similarly, D1 and D3 stimulation caused MEP reduction, while no MEP enhancement could be found to single finger stimulation. In contrast, D123 stimulation induced less effective SAI in upper-limb muscles. MEP potentiation was recorded in some muscles to D123 stimulation. A significant difference between D2 and D123 stimulation was found in APB (ISIs = 30–50 ms) and FDI (ISIs = 40–50 ms) muscles, but not in forearm muscles. The effect to D23stimulation on MEP amplitude was intermediate between those to D2 and D123 stimulation. Our data suggest that motor excitability to cutaneous afferents may be influenced by the size of the receptive fields, this effect being the result of increasing convergence between hand afferents in the somatosensory system. These phenomena appear to be topographically arranged across the representation of upper-limb muscles. These findings may help to understand the functional significance of SAI in normal physiology and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beisteiner R, Windischberger C, Lanzenberger R, Edward V, Cunnington R, Erdler M, Gartus A, Streibl B, Moser E, Deecke L (2001) Finger somatotopy in human motor cortex. Neuroimage 13:1016–1026

    Article  PubMed  CAS  Google Scholar 

  • Burke D, Gandevia S, McKeon B, Skuse N (1982) Interactions between cutaneous and muscle afferent projections to cerebral cortex in man. Electroencephalogr Clin Neurophysiol 53:349–360

    Article  PubMed  CAS  Google Scholar 

  • Cheney P, Fetz E (1984) Corticomotoneuronal cells contribute to long latency stretch reflexes in the rhesus monkey. J Physiol 349:249–272

    PubMed  CAS  Google Scholar 

  • Classen J, Steinfelder B, Liepert J, Stefan K, Celnik P, Cohen LG, Hess A, Kunesch E, Chen R, Benecke R, Hallett M (2000) Cutaneomotor integration in humans is somatotopically organized at various levels of the nervous system and is task-dependent. Exp Brain Res 130:48–59

    Article  PubMed  CAS  Google Scholar 

  • Clouston P, Kiers L, Menkes D, Sander H, Chiappa K, Cros D (1995) Modulation of motor activity by cutaneous input: inhibition of the magnetic motor evoked potential by digital electrical stimulation. Electroencephalogr Clin Neurophysiol 97:114–125

    Article  PubMed  CAS  Google Scholar 

  • Day B, Riescher H, Struppler A, Rothwell JC, Marsden C (1991) Changes in the response to magnetic and electrical stimulation of the motor cortex following muscle stretch in man. J Physiol 433:41–57

    PubMed  CAS  Google Scholar 

  • Dechent P, Frahm J (2003) Functional somatotopy of finger representations in human primary motor cortex. Hum Brain Mapp 18:272–283

    Article  PubMed  Google Scholar 

  • Deletis M, Schild J, Beric A, Dimitrijevic MR (1992) Facilitation of motor evoked potentials by somatosensory afferent stimulation. Electroencephalogr Clin Neurophysiol 85:302–310

    Article  PubMed  CAS  Google Scholar 

  • Delwaide PJ, Olivier E (1990) Conditioning transcranial cortical stimulation (TCCS) by exteroceptive stimulation in parkinsonian patients. Adv Neurol 53:175–181

    PubMed  CAS  Google Scholar 

  • Deuschl G, Michelis R, Berardelli A, Schenck E, Inghilleri M, Lucking CH (1991) Effects of electrical and magnetic transcranial stimulation on long latency reflexes. Exp Brain Res 83:403–410

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Di Giovanni S, Zito G, Tonali P, Rothwell JC (2000) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135:455–461

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Oliviero A, Tonali PA, Marra C, Daniele A, Profice P, Saturno E, Pilato F, Masullo C, Rothwell JC (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59:392–397

    PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Saturno E, Dileone M, Pilato F, Nardone R, Ranieri F, Musumeci G, Fiorilla T, Tonali PA (2005) Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans. J Physiol 564:661–668

    Article  PubMed  CAS  Google Scholar 

  • Evarts EV, Fromm C (1979) Sensory responses in motor cortex neurones during precise motor control. Neurosci Lett 5:267–272

    Article  Google Scholar 

  • Gandevia S, Burke D, McKeon B (1983) Convergence in the somatosensory pathway between cutaneous afferents from the index and middle fingers in man. Exp Brain Res 50:415–425

    Article  PubMed  CAS  Google Scholar 

  • Gardner EP, Kandel ER (2000) Touch. In: Kandel ER, Schwartz JH, Jessel TM (eds) Principles of neural science, 4th edn. Mc Graw Hill, New York, pp 451–471

    Google Scholar 

  • Hsieh C, Shima F, Tobimatsu S, Sun S, Kato M (1995) The interaction of the somatosensory evoked potentials to simultaneous finger stimuli in the human central nervous system. A study using direct recording. Electroencephalogr Clin Neurophysiol 96:135–142

    Article  PubMed  CAS  Google Scholar 

  • Huttunen J, Alhfors S, Hari R (1992) Interaction of afferent impulses in human primary sensorimotor cortex. Electroencephalogr Clin Neurophysiol 82:176–181

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi H, Tobimatsu S, Shigeto H, Morioka T, Yamamoto T, Fukui M (2000) Differential interaction of somatosensory inputs in the human primary sensory cortex: a magnetoencephalographic study. Clin Neurophysiol 111:1095–1102

    Article  PubMed  CAS  Google Scholar 

  • Johansson RS, Lemon RN, Westling G (1994) Time-varying enhancement of human cortical excitability mediated by cutaneous input during precision grip. J Physiol 481:761–775

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Ng J, Théoret H, Pascual-Leone A (2003) Modulation of intracortical neuronal circuits in human hand motor area by digit stimulation. Exp Brain Res 149:1–8

    PubMed  Google Scholar 

  • Krause T, Kurth R, Ruben J, Schwiemann J, Villringer K, Deuchert M, Moosman M, Brandt S, Wolf K, Curio G, Villringer A (2001) Representational overlap of adjacent fingers in multiple areas of human primary somatosensory cortex depends on electrical stimulus intensity: an fMRI study. Brain Res 899:36–46

    Article  PubMed  CAS  Google Scholar 

  • Kurth R, Villringer K, Curio G, Wolf KJ, Krause T, Repenthin J, Schwiemann J, Deuchert M, Villringer A (2000) fMRI shows multiple somatotopic digit representations in human primary somatosensory cortex. Neuroreport 11:1487–1491

    Article  PubMed  CAS  Google Scholar 

  • Lemon RN, Muir RB, Mantel GW (1987) The effects upon the activity of hand and forearm muscles of intracortical stimulation in the vicinity of corticomotor neurones in the conscious monkey. Exp Brain Res 66:621–37

    Article  PubMed  CAS  Google Scholar 

  • Macefield V, Rothwell JC, Day BL (1996) The contribution of transcortical pathways to long-latency stretch and tactile reflexes in human hand muscles. Exp Brain Res 108:147–154

    PubMed  CAS  Google Scholar 

  • Maertens de Noordhout A, Rothwell JC, Day B, Dressler D, Nakashima K, Thompson PD, Marsden CD (1992) Effect of digital nerve stimuli on responses to electrical or magnetic stimulation of the human brain. J Physiol 447:535–548

    PubMed  CAS  Google Scholar 

  • Manganotti P, Zanette G, Bonato C, Tinazzi M, Polo A, Fiaschi A (1997) Crossed and direct effect of digital nerves stimulation on motor evoked potential: a study with magnetic brain stimulation. Electroencephalogr Clin Neurophysiol 105:280–289

    Article  PubMed  CAS  Google Scholar 

  • Ohki Y, Johansson RS (1999) Sensorimotor interactions between pairs of fingers in bimanual and unimanual manipulative tasks. Exp Brain Res 127:43–53

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Ridding MC, Pearce SL, Flavel SC (2005) Modulation of intracortical excitability in human hand motor areas. The effect of cutaneous stimulation and its topographical arrangement. Exp Brain Res 163:335–343

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    Article  PubMed  CAS  Google Scholar 

  • Rosen I, Asanuma H (1972) Peripheral afferent inputs to the forelimb area of the monkey motor cortex: input-output relations. Exp Brain Res 14:257–273

    Article  PubMed  CAS  Google Scholar 

  • Rossini PM, Paradiso C, Zarola F, Bernardi G, Caramia MD, Margari L, Ferrari E (1991) Brain excitability and long latency muscular arm responses: non-invasive evaluation in healthy and parkinsonian subjects. Electroencephalogr Clin Neurophysiol 81:454–465

    PubMed  CAS  Google Scholar 

  • Rossini P, Barker A, Berardelli A, Caramia M, Caruso G, Cracco RQ, Dimitrijevic MR, Hallet M, Katayama Y, Lucking CH, Maertens de Noordhout AL, Marsden CD, Murray NMF, Rothwell JC, Swash M, Tomberg C (1994) Non invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–92

    Article  PubMed  CAS  Google Scholar 

  • Sailer A, Molnar GF, Paradiso G, Gunraj CA, Lang AE, Chen R (2003) Short and long latency afferent inhibition in Parkinson’s disease. Brain 126:1883–1894

    Article  PubMed  Google Scholar 

  • Schieber MH (1990) How might the motor cortex individuate movements? Trends Neurosci 13:440–445

    Article  PubMed  CAS  Google Scholar 

  • Schieber MH (2001) Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 86:2125–2143

    PubMed  CAS  Google Scholar 

  • Tamburin S, Zanette G (2005) Abnormalities of sensory processing and sensorimotor interactions in secondary dystonia. A neurophysiological study in two patients. Mov Disord 20:354–360

    Google Scholar 

  • Tamburin S, Manganotti P, Zanette G, Fiaschi A (2001) Cutaneomotor integration in human hand motor areas: somatotopic effect and interaction of afferents. Exp Brain Res 141:232–241

    Article  PubMed  CAS  Google Scholar 

  • Tamburin S, Manganotti P, Marzi CA, Fiaschi A, Zanette G (2002) Abnormal somatotopic arrangement of sensorimotor interactions in dystonic patients. Brain 125:2719–2730

    Article  PubMed  Google Scholar 

  • Tamburin S, Fiaschi A, Idone D, Lochner P, Manganotti P, Zanette G (2003a) Abnormal sensorimotor integration is related to disease severity in Parkinson’s disease: a TMS study. Mov Disord 18:1316–1324

    Article  Google Scholar 

  • Tamburin S, Fiaschi A, Andreoli A, Forgione A, Manganotti P, Zanette G (2003b) Abnormal cutaneomotor integration in patients with cerebellar syndromes: a transcranial magnetic stimulation study. Clin Neurophysiol 114:643–651

    Article  Google Scholar 

  • Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero O, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523:503–513

    Article  PubMed  CAS  Google Scholar 

  • Werhahn KJ, Fong JKY, Meyer BU, Priori A, Rothwell JC, Day BL, Thompson PD (1994) The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseus muscle. Electroencephalogr Clin Neurophysiol 93:138–146

    Article  PubMed  CAS  Google Scholar 

  • Yokota T, Saito Y, Shimizu Y (1995) Increased corticomotoneural excitability after peripheral nerve stimulation in DOPA non responsive hemiparkinsonism. J Neurol Sci 129:34–39

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Tamburin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamburin, S., Fiaschi, A., Andreoli, A. et al. Sensorimotor integration to cutaneous afferents in humans: the effect of the size of the receptive field. Exp Brain Res 167, 362–369 (2005). https://doi.org/10.1007/s00221-005-0041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0041-y

Keywords

Navigation