Skip to main content
Log in

Effects of learning on color-form conjunction in macaque inferior temporal neurons

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Many neurons in area TE of the macaque respond selectively to colors or forms. One problem remaining is how these neurons contribute to conjunctive perception of these features when there are many objects in their receptive fields. In order to investigate the effects of learning on neural activities for the conjunction of color and form, neurons were recorded during a visual fixation task and two go/no-go visual discrimination tasks. One discrimination task involved conjunction of color and form for successively presented colored patterns. In this task, the monkeys were required to hold two “go” stimuli in the transient memory. The other task involved associative discrimination between the form of gray patterns and the color of irregular textures when the two features were presented simultaneously at separate locations. Each of the two stimuli was neutral in the go/no-go behavior in the latter task. One third of responsive neurons showed a significant interaction of color and form in response to the colored patterns during the conjunction task. Responses of these neurons were mostly enhanced for a particular colored pattern, which was usually one of the go stimuli. The response enhancement was preserved when the go stimulus was presented with a distractor. However, this change was not seen during the associative discrimination task. During the fixation task, the neurons that showed interaction of color and form in the conjunction task were usually selective either for the forms of gray patterns or colors of irregular textures, and only a few neurons were selective for both. The results indicate that neurons in area TE can conjoin color and form actively for an object held in the working memory, suppressing illusory conjunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2
Fig. 3a–h
Fig. 4a–h
Fig. 5a–h
Fig. 6A, B

Similar content being viewed by others

References

  • Bacon WF, Egeth HE (1997) Goal-directed guidance of attention: evidence from conjunctive visual search. J Exp Psychol Hum Percept Perform 23 948–961

    Google Scholar 

  • Baker CI, Behrmann M, Olson CR (2002) Impact learning on representation of parts and wholes in monkey inferotemporal cortex. Nature Neurosci 5:1210–1216

    CAS  PubMed  Google Scholar 

  • Baylis GC, Rolls ET (1987) Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks. Exp Brain Res 65:614–622

    CAS  PubMed  Google Scholar 

  • Buckley MJ, Gaffan D, Murray EA (1997) Functional double dissociation between two inferior temporal cortical areas: perirhinal cortex versus middle temporal gyrus. J Neurophysiol 77:587–598

    CAS  PubMed  Google Scholar 

  • Bussey TJ, Saksida LM (2002) The organization of visual object representations: a connectionist model of effects of lesions in perirhinal cortex. Eur J Neurosci 15:355–364

    PubMed  Google Scholar 

  • Bussey TJ, Wise SP, Murray EA (2002) Interaction of ventral and orbital prefrontal cortex with inferotemporal cortex in conditional visuomotor learning. Behav Neurosci 116:703–715

    PubMed  Google Scholar 

  • Chelazzi L, Duncan J, Miller EK, Desimone R (1998) Responses of neurons in inferior temporal cortex during memory-guided visual search. J Neurophysiol 80:2918–2940

    CAS  PubMed  Google Scholar 

  • Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4:2051–2062

    CAS  PubMed  Google Scholar 

  • Duncan J (1984) Selective attention and the organization of visual information. J Exp Psychol Gen 113:501–517

    CAS  PubMed  Google Scholar 

  • Egeth HE, Virzi RA, Garbart H (1984) Searching for conjunctively defined targets. J Exp Psychol Hum Percept Perform 10:32–39

    CAS  PubMed  Google Scholar 

  • Fuster JM (1990) Inferotemporal units in selective visual attention and short-term memory. J Neurophysiol 64:681–697

    CAS  PubMed  Google Scholar 

  • Gaffan D, Harrison S (1988) Inferotemporal-frontal disconnection and fornix transection in visuomotor conditional learning by monkeys. Behav Brain Res 31:149–163

    CAS  PubMed  Google Scholar 

  • Gallant JL, Connor CE, Rakshit S, Lewis JW, Van Essen DC (1996) Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. J Neurophysiol 76:2718–2739

    CAS  PubMed  Google Scholar 

  • Gilbert CD, Wiesel TN (1989) Columnar specifity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 9:2432–2442

    CAS  PubMed  Google Scholar 

  • Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol 35:96–111

    CAS  PubMed  Google Scholar 

  • Haenny PE, Schiller PH (1988) State dependent activity in monkey visual ocrtex. I. Single cell activity in V1 and V4 on visual tasks. Exp Brain Res 69:225–244

    CAS  PubMed  Google Scholar 

  • Heywood CA, Schields C, Cowey A (1988) The involvement of the temporal lobes in colour discrimination. Exp Brain Res 71:437–441

    CAS  PubMed  Google Scholar 

  • Hikosaka K (1997) Responsiveness of neurons in the posterior inferotemporal cortex to visual patterns in the macaque monkey. Behav Brain Res 89:275–283

    CAS  PubMed  Google Scholar 

  • Humphreys GW (2003) Conscious visual representations build from multiple binding processes: evidence from neuropsychology. Prog Brain Res 142:243–255

    PubMed  Google Scholar 

  • Huxlin KR, Saunders RC, Marchionini D, Pham H-A, Merigan WH (2000) Perceptual deficits after lesions of inferotemporal cortex in macaques. Cereb Cortex 10:671–683

    CAS  PubMed  Google Scholar 

  • Kobatake E, Wang G, Tanaka K (1998) Effects of shape-dicrimination training on the selectivity of inferotemporal cells in adult monkeys. J Neurophysiol 80: 324–330

    Google Scholar 

  • Komatsu H (1982) Prefrontal unit activity during a color discrimination task with GO and NO-GO responses in the monkey. Brain Res 244:269–277

    CAS  PubMed  Google Scholar 

  • Komatsu H, Ideura Y (1993) Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey. J Neurophysiol 70:677–694

    CAS  PubMed  Google Scholar 

  • Komatsu H, Ideura Y, Kaji S, Yamane S (1992) Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey. J Neruosci 12:408–424

    CAS  Google Scholar 

  • Lee D, Chun MM (2001) What are the units of visual short-term memory, objects or spatial locations? Percept Psychophysics 63:253–257

    CAS  Google Scholar 

  • Logothetis NK, Pauls J, Poggio T (1995) Shape representation in the inferior temporal cortex of monkeys. Curr Biol 5:552–563

    Article  Google Scholar 

  • Luck SJ, Vogel EK (1997) The capacity of visual working memory for features and conjunctions. Nature 390:279–281

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Gochin PM, Gross CG (1993) Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus. Brain Res 616:25–29

    CAS  PubMed  Google Scholar 

  • Missal M, Vogels R, Chao-Yi L, Orban GA (1999) Shape interactions in Macaque inferior temporal neurons. J Neurophysiol 82:131–142

    CAS  PubMed  Google Scholar 

  • Miyashita Y (1988) Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335:817–820

    CAS  PubMed  Google Scholar 

  • Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229:782–784

    CAS  PubMed  Google Scholar 

  • Motter BC (1994) Neural correlates of attentive selection for color or luminance in extrastriate area V4. J Neurosci 14:2178–2189

    CAS  PubMed  Google Scholar 

  • Murray EA, Bussey TJ (1999) Perceptual-mnemonic functions of the perirhinal cortex. Trends Cog Sci 3:142–151

    Google Scholar 

  • Paul MA, Tipper SP (2003) Object-based representations facilitate memeory for inhibitory processes. Exp Brain Res 148:283–289

    PubMed  Google Scholar 

  • Pashler H (1987) Detecting conjunctions of color and form: reassessing the serial search hypothesis. Percept Psychophys 41:191–201

    CAS  PubMed  Google Scholar 

  • Perrett DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329–342

    CAS  PubMed  Google Scholar 

  • Pollen DA, Nagler M, Daugman J, Kronauer R, Cavanagh P (1984) Use of Gabor elementary functions to probe receptive field substructure of posterior inferotemporal neurons in the owl monkey. Vision Res 24:233–241

    CAS  PubMed  Google Scholar 

  • Prinzmetal W, Presti DE and Posner MI (1986) Does attention affect visual feature integration? J Exp Psychol Hum Percept Perform 12:361–369

    CAS  PubMed  Google Scholar 

  • Richmond BJ, Wurtz RH, Sato T (1983) Visual responses of inferior temporal neurons in awake rhesus monkey. J Neurophysiol 50:1415–1432

    CAS  PubMed  Google Scholar 

  • Richmond BJ, Optican LM, Podell M, Spitzer H (1987) Temporal encoding of two-dimensional patterns by single units in primate inferotemporal cortex. I. Response characteristics. J Neurophysiol 57:132–146

    CAS  PubMed  Google Scholar 

  • Ridley RM, Hester NS, Ettlinger G (1977) Stimulus- and response-dependent units from the occipital and temporal lobes of the unanaesthetized monkey performing learnt visual tasks. Exp Brain Res 27:539–552

    CAS  PubMed  Google Scholar 

  • Rolls ET, Tovee MJ (1995) The responses of single neurons in the temporal visual cortical areas of the macaque when more than on stimulus is presented in the receptive field. Exp Brain Res 103:409–420

    CAS  PubMed  Google Scholar 

  • Rolls ET, Judge SJ, Sanghera MK (1977) Activity of neurones in the inferotemporal cortex of the alert monkey. Brain Res 130:229–238

    CAS  PubMed  Google Scholar 

  • Sakagami M, Niki H (1994) Encoding of behavioral significance of visual stimuli by primate prefrontal neurons: relation to relevant task conditions. Exp Brain Res 97:423–436

    CAS  PubMed  Google Scholar 

  • Sa’ry G, Vogels R, Orban GA (1995) Cue-invariant shape selectivity of macaque inferior temporal neurons. Science 260:995–997

    Google Scholar 

  • Sato T (1988) Effects of attention and stimulus interaction on visual responses of inferior temporal neurons in macaque. J Neurophysiol 60:344–364

    CAS  PubMed  Google Scholar 

  • Sato T (1989) Interaction of visual stimuli in the receptive fields of inferior temporal neurons in awake macaques. Exp Brain Res 77:23–30

    CAS  PubMed  Google Scholar 

  • Sato T (1995) Interactions between two different visual stimuli in the receptive fields of inferior temporal neurons in macaques during matching behaviors. Exp Brain Res 105:209–219

    CAS  PubMed  Google Scholar 

  • Sato T, Kawamura T, Iwai E (1980) Responsiveness of inferotemporal single units to visual pattern stimuli in monkeys performing discrimination. Exp Brain Res 38:313–319

    CAS  PubMed  Google Scholar 

  • Schneider W, Shiffrin RM (1977) Controlled and automatic human information processing: I. Detection, search, and attention. Psychol Rev 84:1–66

    Google Scholar 

  • Schwartz EL, Desimone R, Albright TD, Gross CG (1983) Shape recognition and inferior temporal neurons. Proc Natl Acad Sci U S A 80: 5776–5778

    Google Scholar 

  • Seltzer B, Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149:1–24

    Google Scholar 

  • Sigala N, Logothetis NK (2002) Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415:318–320

    CAS  PubMed  Google Scholar 

  • Tanaka K, Saito H, Fukuda Y, Moriya M (1991) Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol 66:170–189

    CAS  PubMed  Google Scholar 

  • Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cognitive Psychol 12:97–136

    CAS  PubMed  Google Scholar 

  • Treisman A, Schmidt H (1982) Illusory conjunctions in the perception of objects. Cognitive Psychol 14:107–141

    CAS  Google Scholar 

  • Vogels R, Orban GA (1994) Activity of inferior temporal neruons during orientation discrimination with successively presented gratings. J Neurophysiol 71:1428–1451

    CAS  PubMed  Google Scholar 

  • Vogels R, Sa’ry G, Orban GA (1995) How task-related are the responses of inferior temporal neurons? Vis Neurosci 12:207–214

    CAS  PubMed  Google Scholar 

  • Wolfe JM, Cave KR, Franzel SL (1989) Guided search: an alternative to the feature integration model for visual search. J Exp Psychol Hum Percept Perform 15:419–433

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, T. Effects of learning on color-form conjunction in macaque inferior temporal neurons. Exp Brain Res 162, 265–277 (2005). https://doi.org/10.1007/s00221-004-2150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2150-4

Keywords

Navigation