Skip to main content
Log in

Proportional myoelectric control of a virtual object to investigate human efferent control

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We used proportional myoelectric control of a one-dimensional virtual object to investigate differences in efferent control between the proximal and distal muscles of the upper limbs. Eleven subjects placed one of their upper limbs in a brace that restricted movement while we recorded electromyography (EMG) signals from elbow flexors/extensors or wrist flexors/extensors during isometric contractions. By activating their muscles, subjects applied virtual forces to a virtual object using a real-time computer interface. The magnitudes of these forces were proportional to EMG amplitudes. Subjects used this proportional EMG control to move the virtual object through two tracking tasks, one with a static target and one with a moving target (i.e., a sine wave). We hypothesized that subjects would have better control over the virtual object using their distal muscles rather than using their proximal muscles because humans typically use more distal joints to perform fine motor tasks. The results indicated that there was no difference in subjects’ ability to control virtual object movements when using either upper arm muscles or forearm muscles. These results suggest that differences in control accuracy between elbow joint movements and wrist joint movements are more likely to be a result of motor practice, proprioceptive feedback or joint mechanics rather than inherent differences in efferent control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3a–d
Fig. 4a–d
Fig. 5a, b
Fig. 6a, b
Fig. 7a, b
Fig. 8a, b

Similar content being viewed by others

References

  • Basmajian JV, Blumenstein R (1989) Electrode placement in electromyographic biofeedback. In: Basmajian JV (ed) Biofeedback: principles and practice for clinicians. Williams and Wilkins, Baltimore, pp 369–382

  • Bizzi E, Tresch MC, Saltiel P, d’Avella A (2000) New perspectives on spinal motor systems. Nat Rev Neurosci 1:101–108

    Article  CAS  PubMed  Google Scholar 

  • Crago PE, Houk JC, Rymer WZ (1982) Sampling of total muscle force by tendon organs. J Neurophysiol 47:1069–1083

    CAS  PubMed  Google Scholar 

  • De Domenico G, McCloskey DI (1987) Accuracy of voluntary movements at the thumb and elbow joints. Exp Brain Res 65:471–478

    PubMed  Google Scholar 

  • Dettmers C, Connelly A, Stephan KM, Turner R, Friston KJ, Frackowiak RS, Gadian DG (1996a) Quantitative comparison of functional magnetic resonance imaging with positron emission tomography using a force-related paradigm. Neuroimage 4:201–209

    Article  CAS  PubMed  Google Scholar 

  • Dettmers C, Lemon RN, Stephan KM, Fink GR, Frackowiak RS (1996b) Cerebral activation during the exertion of sustained static force in man. Neuroreport 7:2103–2110

    CAS  PubMed  Google Scholar 

  • Dupont AC, Morin EL (1994) A myoelectric control evaluation and trainer system. IEEE Trans Rehabil Eng 2:100–107

    Article  Google Scholar 

  • Evans HB, Pan Z, Parker PA, Scott RN (1984) Signal processing for proportional myoelectric control. IEEE Trans Biomed Eng 31:207–211

    CAS  PubMed  Google Scholar 

  • Gaine WJ, Smart C, Bransby-Zachary M (1997) Upper limb traumatic amputees. Review of prosthetic use. J Hand Surg [Br] 22:73–76

    Google Scholar 

  • Gaines BR (1969) Linear and nonlinear models of human controller. Int J Man-Machine Studies 1:333–360

    Google Scholar 

  • Gallant PJ, Morin EL, Peppard LE (1998) Feature-based classification of myoelectric signals using artificial neural networks. Med Biol Eng Comput 36:485–489

    CAS  PubMed  Google Scholar 

  • Gandevia SC, Kilbreath SL (1990) Accuracy of weight estimation for weights lifted by proximal and distal muscles of the human upper limb. Journal of Physiology (London) 423:299–310

    Google Scholar 

  • Gandevia SC, McCloskey DI, Burke D (1992) Kinaesthetic signals and muscle contraction. Trends Neurosci 15:62–65

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Pellizzer G, Poliakov AV, Schieber MH (1999) Neural coding of finger and wrist movements. J Comput Neurosci 6:279–288

    Article  CAS  PubMed  Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PB (1972) Proprioceptive illusions induced by muscle vibration: contribution by muscle spindles to perception? Science 175:1382–1384

    CAS  PubMed  Google Scholar 

  • Gottlieb GL (1996) Muscle compliance: implications for the control of movement. Exerc Sport Sci Rev 24:1-34

    CAS  PubMed  Google Scholar 

  • Gregory JE, Proske U (1979) The responses of Golgi tendon organs to stimulation of different combinations of motor units. J Physiol 295:251–262

    CAS  PubMed  Google Scholar 

  • Hall LA, McCloskey DI (1983) Detections of movements imposed on finger, elbow and shoulder joints. J Physiol 335:519–533

    CAS  PubMed  Google Scholar 

  • Hogan N (1976) A review of the methods of processing EMG for use as a proportional control signal. Biomed Eng 11:81–86

    CAS  PubMed  Google Scholar 

  • Hogan N (1985) The mechanics of multi-joint posture and movement control. Biol Cybern 52:315–331

    CAS  PubMed  Google Scholar 

  • Hudgins B, Parker P, Scott RN (1993) A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 40:82–94

    Article  CAS  PubMed  Google Scholar 

  • Jami L (1992) Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiol Rev 72:623–666

    CAS  PubMed  Google Scholar 

  • Jones KE, Wessberg J, Vallbo AB (2001) Directional tuning of human forearm muscle afferents during voluntary wrist movements. J Physiol 536:635–647

    CAS  PubMed  Google Scholar 

  • Jones LA (2000) Visual and haptic feedback in the control of force. Exp Brain Res 130:269–272

    Article  CAS  PubMed  Google Scholar 

  • Kearney RE, Stein RB, Parameswaran L (1997) Identification of intrinsic and reflex contributions to human ankle stiffness dynamics. IEEE Trans Biomed Eng 44:493–504

    Article  CAS  PubMed  Google Scholar 

  • Kirsch RF, Stein RB (1997) Neural and muscular properties: current views and controversies. In: Winters JM, Crago PE (eds) Biomechanics and neural control of movement. Springer, New York Berlin Heidelberg

  • Lovely DF, Stocker D, Scott RN (1990) A computer-aided myoelectric training system for young upper limb amputees. J Microcomput Appl 13:245–259

    Google Scholar 

  • Lundberg A, Malmgren K, Schomburg ED (1978) Role of joint afferents in motor control exemplified by effects on reflex pathways from Ib afferents. J Physiol 284:327–343

    CAS  PubMed  Google Scholar 

  • Macefield G, Gandevia SC, Burke D (1990) Perceptual responses to microstimulation of single afferents innervating joints, muscles and skin of the human hand. J Physiol 429:113–129

    CAS  PubMed  Google Scholar 

  • Manal K, Gonzalez RV, Lloyd DG, Buchanan TS (2002) A real-time EMG-driven virtual arm. Comput Biol Med 32:25–36

    Article  PubMed  Google Scholar 

  • Millstein SG, Heger H, Hunter GA (1986) Prosthetic use in adult upper limb amputees: a comparison of the body powered and electrically powered prostheses. Prosthet Orthot Int 10:27–34

    CAS  PubMed  Google Scholar 

  • Mirbagheri MM, Barbeau H, Kearney RE (2000) Intrinsic and reflex contributions to human ankle stiffness: variation with activation level and position. Exp Brain Res 135:423–436

    Article  CAS  PubMed  Google Scholar 

  • Moberg E (1983) The role of cutaneous afferents in position sense, kinaesthesia, and motor function of the hand. Brain 106:1–19

    PubMed  Google Scholar 

  • Moran DW, Schwartz AB (1999) Motor cortical representation of speed and direction during reaching. J Neurophysiol 82:2676–2692

    CAS  PubMed  Google Scholar 

  • Morin E, Parker PA, Scott RN (1993) Operator error in a level coded myoelectric control channel. IEEE Trans Biomed Eng 40:558–562

    Article  CAS  PubMed  Google Scholar 

  • Mussa-Ivaldi FA, Hogan N, Bizzi E (1985) Neural, mechanical, and geometric factors subserving arm posture in humans. J Neurosci 5:2732–2743

    PubMed  Google Scholar 

  • Ng JK-F, Richardson CA, Kippers V, Parnianpour M, Bui BH (1996) Clinical applications of power spectral analysis of electromyographic investigations in muscle function. Man Ther 2:99–103

    Article  Google Scholar 

  • Nirkko AC, Ozdoba C, Redmond SM, Burki M, Schroth G, Hess CW, Wiesendanger M (2001) Different ipsilateral representations for distal and proximal movements in the sensorimotor cortex: activation and deactivation patterns. Neuroimage 13:825–835

    Article  CAS  PubMed  Google Scholar 

  • Paciga JE, Richard PD, Scott RN (1980) Error rate in five-state myoelectric control systems. Med Biol Eng Comput 18:287–290

    CAS  PubMed  Google Scholar 

  • Prochazka A, Wand P (1980) Tendon organ discharge during voluntary movements in cats. J Physiol 303:385–390

    CAS  PubMed  Google Scholar 

  • Rao AK, Gordon AM (2001) Contribution of tactile information to accuracy in pointing movements. Exp Brain Res 138:438–445

    Article  CAS  PubMed  Google Scholar 

  • Reina GA, Moran DW, Schwartz AB (2001) On the relationship between joint angular velocity and motor cortical discharge during reaching. J Neurophysiol 85:2576–2589

    CAS  PubMed  Google Scholar 

  • Roeschlein RA, Domholdt E (1989) Factors related to successful upper extremity prosthetic use. Prosthet Orthot Int 13:14–18

    CAS  PubMed  Google Scholar 

  • Schwartz AB, Moran DW (2000) Arm trajectory and representation of movement processing in motor cortical activity. Eur J Neurosci 12:1851–1856

    Article  CAS  PubMed  Google Scholar 

  • Scott RN (1966) Myoelectric control of prostheses. Arch Phys Med Rehabil 47:174–181

    CAS  PubMed  Google Scholar 

  • Scott RN, Parker PA (1988) Myoelectric prostheses: state of the art. J Med Eng Technol 12:143–151

    CAS  PubMed  Google Scholar 

  • Scott RN, Paciga JE, Parker PA (1978) Operator error in multistate myoelectric control systems. Med Biol Eng Comput 16:296–301

    CAS  PubMed  Google Scholar 

  • Sears HH, Shaperman J (1991) Proportional myoelectric hand control: an evaluation. Am J Phys Med Rehabil 70:20–28

    CAS  PubMed  Google Scholar 

  • Stein RB, Zehr EP, Lebiedowska MK, Popovic DB, Scheiner A, Chizeck HJ (1996) Estimating mechanical parameters of leg segments in individuals with and without physical disabilities. IEEE Trans Rehabil Eng 4:201–211

    Article  CAS  PubMed  Google Scholar 

  • Taira M, Boline J, Smyrnis N, Georgopoulos AP, Ashe J (1996) On the relations between single cell activity in the motor cortex and the direction and magnitude of three-dimensional static isometric force. Exp Brain Res 109:367–376

    CAS  PubMed  Google Scholar 

  • Thickbroom GW, Phillips BA, Morris I, Byrnes ML, Mastaglia FL (1998) Isometric force-related activity in sensorimotor cortex measured with functional MRI. Exp Brain Res 121:59–64

    Article  CAS  PubMed  Google Scholar 

  • Viitasalo JH, Komi PV (1977) Signal characteristics of EMG during fatigue. Eur J Appl Physiol Occup Physiol 37:111–121

    CAS  PubMed  Google Scholar 

  • Zecca M, Micera S, Carrozza MC, Dario P (2002) Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit Rev Biomed Eng 30:459–485

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of the University of Michigan Human Neuromechanics Laboratory for their insights and contributions to this project. Supported by NIH R01NS045486.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith E. Gordon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, K.E., Ferris, D.P. Proportional myoelectric control of a virtual object to investigate human efferent control. Exp Brain Res 159, 478–486 (2004). https://doi.org/10.1007/s00221-004-1970-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1970-6

Keywords

Navigation