Skip to main content
Log in

Transient increases of synchronized neural activity during movement preparation: influence of cognitive constraints

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The ability to prepare movement is an essential requirement for the control of goal-directed actions. It allows us to respond in an adaptable and swift manner to environmental conditions. In the present study, we manipulate cognitive context, by means of response probability, to modify the degree of movement preparation in a delayed cueing task performed with the right hand, and evaluate the neural dynamics (EEG coherence) and behavioural output (reaction time). Task-related coherence was stronger over the contralateral hemisphere. In particular, coherence between the left sensorimotor area and frontal (C3-F3, C3-FC3) and parietal (C3-P3) regions was increased during right-hand movement preparation as compared to rest in the alpha frequency band (8–12 Hz). Reducing response probability diminished the degree of functional coupling between C3-F3 and C3-FC3, and was associated with a prolonged reaction time. These findings suggest an association between neural dynamics and behavioural performance and emphasize that response predictability biases information processing in goal-oriented behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Andersen RA (1997) Multimodal integration for the representation of space in the posterior parietal cortex. Philos Trans R Soc Lon B Biol Sci 352:1421–1428

    Article  CAS  PubMed  Google Scholar 

  • Başar E, Başar-Eroglu C, Karakas S, Schürmann M (1999) Are cognitive processes manifested in event-related gamma, alpha, theta and delta oscillations in the EEG? Neurosci Lett 259:165–168

    Google Scholar 

  • Bressler L (1995) Large-scale cortical networks and cognition. Brain Res Rev 20:288–304

    Article  CAS  PubMed  Google Scholar 

  • Cantero JL, Atienza M, Salas RM, Gomez CM (1999) Alpha EEG coherence in different brain states: an electrophysiological index of the arousal level in human subjects. Neurosci Lett 271:167–170

    Article  CAS  PubMed  Google Scholar 

  • Casey BJ, Forman SD, Franzen P, Berkowitz A, Braver TS, Nystrom LE, Thomas KM, Noll DC (2001) Sensitivity of prefrontal cortex to changes in target probability: a functional MRI study. Hum Brain Mapp 13:26–33

    Article  CAS  PubMed  Google Scholar 

  • Connolly JD, Goodale MA, Menon RS, Munoz DP (2002) Human fMRI evidence for the neural correlates of preparatory set. Nat Neurosci 5:1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Deiber MP, Ibaňez V, Sadato N, Hallett M (1996) Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 75:233–247

    CAS  PubMed  Google Scholar 

  • Dinse HR, Kruger K, Akhavan AC, Spengler F, Schöner G, Schreiner CE (1997) Low-frequency oscillations of visual, auditory and somatosensory cortical neurons evoked by sensory stimulation. Int J Psychophysiol 26:205–227

    Article  CAS  PubMed  Google Scholar 

  • Evarts EV, ShinodaY, Wise SP (1984) Neurophysiological approaches to higher brain functions. Wiley, New York

  • Florian G, Andrew C, Pfurtscheller G (1998) Do changes in coherence always reflect changes in functional coupling. Electroencephalogr Clin Neurophysiol 106:87–91

    CAS  PubMed  Google Scholar 

  • Fuster JM (1993) Frontal lobes. Curr Opin Neurobiol 3:160–165

    CAS  PubMed  Google Scholar 

  • Georgopoulos AP (2000) Neural aspects of cognitive motor control. Curr Opin Neurobiol 10:238–241

    CAS  PubMed  Google Scholar 

  • Gerloff C, Richard J, Hadley J, Schulman AE, Honda M, Hallett M (1998) Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain 121:1513–1531

    PubMed  Google Scholar 

  • Gevins AS, Morgan NH, Bressler SL, Cutillo BA, White RM, Illes J, Greer DS, Doyle JC, Zeitlin GM (1987) Human neuroelectric patterns predict performance accuracy. Science 235:580–585

    Google Scholar 

  • González-Hernández JA, Pita-Alcorta C, Cedeňo I, Bosch-Bayard J, Galán-Garcia L, Scherbaum WA, Figueredo-Rodriguez P (2002) Wisconsin Card Sorting Test synchronizes the prefrontal, temporal and posterior association cortex in different frequency ranges and extensions. Hum Brain Mapp 17:37–47

    Article  PubMed  Google Scholar 

  • Homan RW, Herman J, Purdy P (1987) Cerebral location of international 10–20 system electrode placement. Electroencephalogr Clin Neurophysiol 66:376–382

    Google Scholar 

  • Hummel F, Gerloff C (2001) Better swing together. Soc Neurosci Abstr

  • Klimesch W (1996) Memory processes, brain oscillations and EEG synchronization. Int J Psychophysiol 24:61–100

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195

    CAS  PubMed  Google Scholar 

  • Klimesch W, Doppelmayr M, Schimke H, Pachinger T (1996) Alpha frequency, reaction time, and the speed of processing information. J Clin Neurophysiol 13:511–518

    CAS  PubMed  Google Scholar 

  • Liang H, Bressler SL, Ding M, Truccolo WA, Nakamura R (2002) Synchronized activity in prefrontal cortex during anticipation of visuomotor processing. Neuroreport 13:2011–2015

    PubMed  Google Scholar 

  • Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1:59–65

    Google Scholar 

  • Nunez PL (2000) Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav Brain Sci 23:371–437

    CAS  PubMed  Google Scholar 

  • Ohara S, Mima T, Baba K, Ikeda A, Kunieda T, Matsumoto R, Yamamoto J, Matsuhashi M, Nagamine T, Hirasawa K, Hori T, Mihara T, Hashimoto N, Salenius S, Shibasaki H (2001) Increased synchronization of cortical oscillatory activities between human supplementary motor and primary sensorimotor areas during voluntary movements. J Neurosci 21:9377–9386

    CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness. The Edinburgh inventory. Neuropsychologia 9:97–113

    CAS  PubMed  Google Scholar 

  • Passingham RE (1993) The frontal lobes and voluntary action. Oxford University Press, Oxford

  • Pfurtscheller G, Stančák A Jr, Neuper C (1996) Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 24:39–46

    Google Scholar 

  • Posner MI, Petersen S (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42

    CAS  PubMed  Google Scholar 

  • Quintana J, Fuster JM (1999) From perception to action: temporal integrative functions of prefrontal and parietal neurons. Cereb Cortex 9:213–221

    CAS  PubMed  Google Scholar 

  • Ray WJ, Cole HW (1985) EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 228:750–752

    CAS  PubMed  Google Scholar 

  • Schluter ND, Rushworth MF, Mills KR, Passingham RE (1999) Signal-, set-, and movement-related activity in the human premotor cortex. Neuropsychologia 37:233–243

    Article  CAS  PubMed  Google Scholar 

  • Serrien DJ, Cassidy MJ, Brown P (2003) The importance of the dominant hemisphere in the organization of bimanual movements. Hum Brain Mapp 18:296–305

    Article  PubMed  Google Scholar 

  • Shibata T, Shimoyama I, Ito T, Abla D, Iwasa H, Koseki K, Yamanouchi N, Sato T, Nakajima Y (1998) The synchronization between brain areas under motor inhibition process in humans estimated by event-related EEG coherence. Neurosci Res 31:265–271

    Article  CAS  PubMed  Google Scholar 

  • Siegel M, Körding KP, König P (2000) Integrating top-down and bottom-up sensory processing by somato-dendritic interactions. J Comput Neurosci 8:161–173

    Article  PubMed  Google Scholar 

  • Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Ann Rev Neurosci 18:555–586

    Article  Google Scholar 

  • Singer W (1994) Coherence as an organizing principle of cortical functions. Int Rev Neurobiol 37:153–183

    Google Scholar 

  • Singer W (1998) Consciousness and the structure of neuronal representations. Phil Trans R Soc Lond B 353:1829–1840

    Article  CAS  Google Scholar 

  • Steinmetz H, Furst G, Meyer B-U (1989) Craniocerebral topography within the international 10-20 system. Electroencephalogr Clin Neurophysiol 72:499–506

    Google Scholar 

  • Thatcher RW (1995) Tomographic electroencephalography/magnetoencephalography. Dynamics of human neural network switching. J Neuroimaging 5:35–45

    CAS  PubMed  Google Scholar 

  • Thoenissen D, Zilles K, Toni I (2002) Differential involvement of parietal and precentral regions in movement preparation and motor intention. J Neurosci 22:9024–9034

    CAS  PubMed  Google Scholar 

  • Toni I, Schluter ND, Josephs O, Friston K, Passingham RE (1999) Signal-, set- and movement-related activity in the human brain: an event-related fMRI study. Cereb Cortex 9:35–49

    CAS  PubMed  Google Scholar 

  • Von Stein A, Chiang C, König P (2000) Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci U S A 97:14748–14753

    Article  PubMed  Google Scholar 

  • Wei J, Zhao L, Yan G, Duan R, Li D (1988) The temporal and spatial features of event-related EEG spectral changes in 4 mental conditions. Electroencephalogr Clin Neurophysiol 106:416–423

    Google Scholar 

Download references

Acknowledgements

The research was supported by the Medical Research Council of Great Britain and GlaxoSmithKline. We wish to thank Kielan Yarrow for programming expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah J. Serrien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrien, D.J., Fisher, R.J. & Brown, P. Transient increases of synchronized neural activity during movement preparation: influence of cognitive constraints. Exp Brain Res 153, 27–34 (2003). https://doi.org/10.1007/s00221-003-1578-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1578-2

Keywords

Navigation