Skip to main content
Log in

Blow-Up for the 1D Cubic NLS

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the 1D cubic NLS on \(\mathbb R\) and prove a blow-up result for functions that are of borderline regularity, i.e. \(H^s\) for any \(s<-\frac{1}{2}\) for the Sobolev scale and \({\mathcal {F}} L^\infty \) for the Fourier–Lebesgue scale. This is done by identifying at this regularity a certain functional framework from which solutions exit in finite time. This functional framework allows, after using a pseudo-conformal transformation, to reduce the problem to a large-time study of a periodic Schrödinger equation with non-autonomous cubic nonlinearity. The blow-up result corresponds to an asymptotic completeness result for the new equation. We prove it using Bourgain’s method and exploiting the oscillatory nature of the coefficients involved in the time-evolution of the Fourier modes. Finally, as an application we exhibit singular solutions of the binormal flow. More precisely, we give conditions on the curvature and the torsion of an initial smooth curve such that the constructed solutions generate several singularities in finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This term is controllable directly for \(\{B_j\}\in l^{2,s}\) with \(s>\frac{1}{2}\), but not for lower regularity.

  2. To avoid smallness hypothesis on \(\{\alpha _k\}_{k\in \mathbb Z}\) that would come from the linear term in the last integral term of the fixed point operator, this last integrant can be replaced by an oscilatory one in the same spirit as in §2.1 of [5].

References

  1. Banica, V., Vega, L.: On the stability of a singular vortex dynamics. Commun. Math. Phys. 286, 593–627 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Banica, V., Vega, L.: Scattering for 1D cubic NLS and singular vortex dynamics. J. Eur. Math. Soc. 14, 209–253 (2012)

    MathSciNet  Google Scholar 

  3. Banica, V., Vega, L.: Stability of the self-similar dynamics of a vortex filament. to appear in Arch. Ration. Mech. Anal

  4. Banica, V., Vega, L.: The initial value problem for the binormal flow with rough data. Ann. Sci. Éc. Norm. Supér. 48, 1421–1453 (2015)

    MathSciNet  Google Scholar 

  5. Banica, V., Vega, L.: Evolution of polygonal lines by the binormal flow. Ann. PDE 6, 53 (2020)

    Article  MathSciNet  Google Scholar 

  6. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schrödinger equations. Geom. Funct. Anal. 3, 107–156 (1993)

    Article  MathSciNet  Google Scholar 

  7. Bravin, M., Vega, L.: On the one dimensional cubic NLS in a critical space. Discrete Contin. Dyn. Syst. 42, 2563–2584 (2022)

    Article  MathSciNet  Google Scholar 

  8. Carles, R.: Geometric optics and long range scattering for one-dimensional nonlinear Schrödinger equations. Commun. Math. Phys. 220(1), 41–67 (2001)

    Article  ADS  Google Scholar 

  9. Carles, R., Kappeler, T.: Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces. Bull. Soc. Math. France 145, 623–642 (2017)

    Article  MathSciNet  Google Scholar 

  10. Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\), Nonlinear Anal. Theory Methods Appl. 14, 807–836 (1990)

    Article  Google Scholar 

  11. Christ, M., Colliander, J., Tao, T.: Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Am. J. Math. 125, 1235–1293 (2003)

    Article  MathSciNet  Google Scholar 

  12. Da Rios, L.S.: On the motion of an unbounded fluid with a vortex filament of any shape. Rend. Circ. Mat. Palermo 22, 117–135 (1906)

    Google Scholar 

  13. Erdogan, B., Tzirakis, N.: Dispersive Partial Differential Equations: Wellposedness and Applications, London Mathematical Society Student Texts. 86, Cambridge University Press (2016)

  14. Forlano, J., Seong, K.: Transport of Gaussian measures under the flow of one-dimensional fractional nonlinear Schrödinger equations. Commun. PDE 47, 1296–1337 (2022)

    Article  Google Scholar 

  15. Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 309–327 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  16. Grünrock, A.: Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS. Int. Math. Res. Not. 41, 2525–2558 (2005)

    Article  MathSciNet  Google Scholar 

  17. Grünrock, A.: On the Cauchy- and periodic boundary value problem for a certain class of derivative nonlinear Schroedinger equations. arXiv:0006195

  18. Guérin, A.: A new class of critical solutions for 1D cubic NLS. arXiv:2212.08564

  19. Gutiérrez, S., Rivas, J., Vega, L.: Formation of singularities and self-similar vortex motion under the localized induction approximation. Commun. Part. Diff. Eq. 28, 927–968 (2003)

    Article  MathSciNet  Google Scholar 

  20. Harrop-Griffiths, B., Killip, R., Visan, M.: Sharp well-posedness for the cubic NLS and mKdV in \(H^s(\mathbb{R})\), arXiv:2003.05011

  21. Hasimoto, H.: A soliton in a vortex filament. J. Fluid Mech. 51, 477–485 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  22. Hayashi, N., Naumkin, P.: Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations. Am. J. Math. 120, 369–389 (1998)

    Article  Google Scholar 

  23. Jerrard, R.L., Seis, C.: On the vortex filament conjecture for Euler flows. Arch. Ration. Mech. Anal. 224, 135–172 (2017)

    Article  MathSciNet  Google Scholar 

  24. Kato, J., Pusateri, F.: A new proof of long range scattering for critical nonlinear Schrödinger equations. J. Differ. Equ. 24, 923–940 (2011)

    Google Scholar 

  25. Kenig, C.E., Ponce, G., Vega, L.: On the ill-posedness of some canonical dispersive equations. Duke Math. J. 106, 617–633 (2001)

    Article  MathSciNet  Google Scholar 

  26. Killip, R., Visan, M., Zhang, X.: Low regularity conservation laws for integrable PDE. Geom. Funct. Anal. 28, 1062–1090 (2018)

    Article  MathSciNet  Google Scholar 

  27. Kishimoto, N.: Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity. Differ. Integral Equ. 22, 447–464 (2009)

    MathSciNet  Google Scholar 

  28. Koch, H., Tataru, D.: Conserved energies for the cubic NLS in 1-d. Duke Math. J. 167, 3207–3313 (2018)

    Article  MathSciNet  Google Scholar 

  29. Merle, F.: On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass. Commun. Pure Appl. Math. 45, 203–254 (1992)

    Article  MathSciNet  Google Scholar 

  30. Merle, F., Raphaël, P., Szeftel, J.: The instability of Bourgain-Wang solutions for the L2 critical NLS. Am. J. Math. 135, 967–1017 (2013)

    Article  Google Scholar 

  31. Oh, T.: A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces. Funkcialaj Ekvacioj 60, 259–277 (2017)

    Article  MathSciNet  Google Scholar 

  32. Ozawa, T.: Long range scattering for nonlinear Schrödinger equations in one space dimension. Commun. Math. Phys. 139(3), 479–493 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  33. Sohinger, V.: Bounds on the growth of high Sobolev norms of solutions to Nonlinear Schrödinger Equations on \(S^1\). Differ. Int. Equ. 24, 635–718 (2011)

    MathSciNet  Google Scholar 

  34. Tsutsumi, Y.: \(L^2\)-solutions for nonlinear Schrödinger equations and nonlinear groups. Funk-cial. Ekvac. 30, 115–125 (1987)

    Google Scholar 

  35. Vargas, A., Vega, L.: Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite \(L^2\) norm. J. Math. Pures Appl. 80, 1029–1044 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is partially supported as follows. VB is partially supported by the Institut Universitaire de France, by the French ANR project SingFlows. RL is supported by BERC program 2022-2025 and by MICINN (Spain) projects Severo Ochoa CEX2021-001142, PID2021-123034NB-I00 and by the Ramon y Cajal fellowship RYC2021-031981-I. NT is partially supported by the ANR project Smooth ANR-22-CE40-0017. LV is funded by MICINN (Spain) projects Severo Ochoa CEX2021-001142, and PID2021-126813NB-I00 (ERDF A way of making Europe), and by Eusko Jaurlaritza project IT1615-22 and BERC program. The authors would like to thank the referees for their careful reading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Banica.

Additional information

Communicated by K. Nakanishi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banica, V., Lucà, R., Tzvetkov, N. et al. Blow-Up for the 1D Cubic NLS. Commun. Math. Phys. 405, 11 (2024). https://doi.org/10.1007/s00220-023-04906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-023-04906-3

Navigation