Skip to main content
Log in

Variational Bihamiltonian Cohomologies and Integrable Hierarchies III: Linear Reciprocal Transformations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For an integrable hierarchy which possesses a bihamiltonian structure with semisimple hydrodynamic limit, we prove that the linear reciprocal transformation with respect to any of its symmetry transforms it to another bihamiltonian integrable hierarchy. Moreover, we show that the central invariants of the bihamiltonian structure are preserved under such a linear reciprocal transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Adler, M.: On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg–de Vries type equations. Invent. Math. 50, 219–248 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Brini, A.: The local Gromov–Witten theory of \({\mathbb{C} }{\mathbb{P} }^1\) and integrable hierarchies. Commun. Math. Phys. 313, 571–605 (2012)

    Article  ADS  MATH  Google Scholar 

  3. Brini, A., Carlet, G., Rossi, P.: Integrable hierarchies and the mirror model of local \({\mathbb{C} }{\mathbb{P} }^1\). Physica D 241, 2156–2167 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Camassa, R., Holm, D.D., Hyman, J.M.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  MATH  Google Scholar 

  6. Carlet, G., Dubrovin, B., Zhang, Y.: The extended Toda hierarchy. Mosc. Math. J. 4, 313–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlet, G., Kramer, R., Shadrin, S.: Central invariants revisited. J. Éc. Polytech. Math. 5, 149–175 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carlet, G., Posthuma, H., Shadrin, S.: Deformations of semisimple Poisson pencils of hydrodynamic type are unobstructed. J. Differ. Geom. 108, 63–89 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, M., Liu, S.-Q., Zhang, Y.: A two-component generalization of the Camassa–Holm equation and its solutions. Lett. Math. Phys. 75, 1–15 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Degiovanni, L., Magri, F., Sciacca, V.: On deformation of Poisson manifolds of hydrodynamic type. Commun. Math. Phys. 253, 1–24 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dubrovin, B.: Integrable systems in topological field theory. Nucl. Phys. B 379, 627–689 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  12. Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable systems and quantum groups, pp. 120–348. Springer (1996)

  13. Dubrovin, B.: Painlevé transcendents in two-dimensional topological field theory. In: The Painlevé property, pp. 287–412. Springer (1999)

  14. Dubrovin, B., Liu, S.-Q., Yang, D., Zhang, Y.: Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs. Adv. Math. 293, 382–435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dubrovin, B., Liu, S.-Q., Zhang, Y.: On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasi-triviality of bi-hamiltonian perturbations. Commun. Pure Appl. Math. 59, 559–615 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dubrovin, B., Liu, S.-Q., Zhang, Y.: Bihamiltonian cohomologies and integrable hierarchies II: the tau structures. Commun. Math. Phys. 361, 467–524 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Dubrovin, B., Novikov, S.: Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov–Whitman averaging method. Sov. Math. Dokl. 270, 665–669 (1983)

  18. Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants. arXiv:math/0108160 (2001)

  19. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian methods in the theory of solitons, vol. 23. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  20. Ferapontov, E.: Conformally flat metrics, systems of hydrodynamic type and nonlocal Hamiltonian operators. Uspekhi Mat. Nauk 50, 175–176 (1995)

    MathSciNet  Google Scholar 

  21. Ferapontov, E.: Compatible Poisson brackets of hydrodynamic type. J. Phys. A 34, 2377–2391 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ferapontov, E., Pavlov, M.: Reciprocal transformations of Hamiltonian operators of hydrodynamic type: nonlocal Hamiltonian formalism for linearly degenerate systems. J. Math. Phys. 44, 1150–1172 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Physica D 95, 229–243 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4, 47–66 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Getzler, E.: The Toda conjecture. In: Symplectic geometry and mirror symmetry, pp. 51–79. World Scientific (2001)

  26. Getzler, E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J. 111, 535–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, S., Liu, S.-Q., Qu, H., Zhang, Y.: Tri-Hamiltonian structure of the Ablowitz–Ladik hierarchy. Physica D 433, 133180 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, S.-Q.: Lecture notes on bihamiltonian structures and their central invariants. In: B-Model Gromov–Witten theory, pp. 573–625. Springer (2018)

  29. Liu, S.-Q., Qu, H., Zhang, Y.: Generalized Frobenius manifolds with non-flat unity and integrable hierarchies. arXiv:2209.00483 (2022)

  30. Liu, S.-Q., Wang, Z., Zhang, Y.: Super tau-covers of bihamiltonian integrable hierarchies. J. Geom. Phys. 170, 104351 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, S.-Q., Wang, Z., Zhang, Y.: Linearization of Virasoro symmetries associated with semisimple Frobenius manifolds. arXiv:2109.01846 (2021)

  32. Liu, S.-Q., Wang, Z., Zhang, Y.: Variational bihamiltonian cohomologies and integrable hierarchies II: Virasoro symmetries. Commun. Math. Phys. 395, 459–519 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Liu, S.-Q., Wang, Z., Zhang, Y.: Variational bihamiltonian cohomologies and integrable hierarchies I: foundations. Commun. Math. Phys. 401, 985–1031 (2023)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Liu, S.-Q., Zhang, Y.: Jacobi structures of evolutionary partial differential equations. Adv. Math. 227, 73–130 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, S.-Q., Zhang, Y.: Bihamiltonian cohomologies and integrable hierarchies I: a special case. Commun. Math. Phys. 324, 897–935 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Lorenzoni, P., Shadrin, S., Vitolo, R.: Miura-reciprocal transformations and localizable Poisson pencils. arXiv:2301.04475 (2023)

  37. Lorenzoni, P., Vitolo, R.: Weakly nonlocal Poisson brackets, Schouten brackets and supermanifolds. J. Geom. Phys. 149, 103573 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Oevel, W., Fuchssteiner, B., Zhang, H., Ragnisco, O.: Mastersymmetries, angle variables, and recursion operator of the relativistic Toda lattice. J. Math. Phys. 30, 2664–2670 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Pavlov, M.: Conservation of the forms of the Hamiltonian structures upon linear substitution for independent variables. Math. Notes 57, 489–495 (1995)

    Article  MathSciNet  Google Scholar 

  40. Rogers, C., Shadwick, W.F.: Bäcklund transformations and their applications, vol. 161. Academic Press, New York (1982)

    MATH  Google Scholar 

  41. Shabat, A., Zakharov, V.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–70 (1972)

    ADS  MathSciNet  Google Scholar 

  42. Strachan, I.A.B., Stedman, R.: Generalized Legendre transformations and symmetries of the WDVV equations. J. Phys. A 50, 095202 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Suris, Y.B.: The problem of integrable discretization: Hamiltonian approach, vol. 219. Birkhäuser, Cham (2012)

    MATH  Google Scholar 

  44. Tsarev, M.: The geometry of Hamiltonian systems of hydrodynamic type: the generalized hodograph method. Math. USSR Izv. 37, 397–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  45. Verosky, J.M.: Negative powers of Olver recursion operators. J. Math. Phys. 32, 1733–1736 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Xue, T., Zhang, Y.: Bihamiltonian systems of hydrodynamic type and reciprocal transformations. Lett. Math. Phys. 75, 79–92 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC No. 12171268 and No. 12061131014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjin Zhang.

Additional information

Communicated by Y. Kawahigashi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SQ., Wang, Z. & Zhang, Y. Variational Bihamiltonian Cohomologies and Integrable Hierarchies III: Linear Reciprocal Transformations. Commun. Math. Phys. 403, 1109–1152 (2023). https://doi.org/10.1007/s00220-023-04817-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04817-3

Navigation