Skip to main content
Log in

Rigidity of Stable Lyapunov Exponents and Integrability for Anosov Maps

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let f be a non-invertible irreducible Anosov map on d-torus. We show that if the stable bundle of f is one-dimensional, then f has the integrable unstable bundle, if and only if, every periodic point of f admits the same Lyapunov exponent on the stable bundle as its linearization. For higher-dimensional stable bundle case, we get the same result on the assumption that f is a \(C^1\)-perturbation of a linear Anosov map with real simple Lyapunov spectrum on the stable bundle. In both cases, this implies if f is topologically conjugate to its linearization, then the conjugacy is smooth on the stable bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aoki, N., Hiraide, K.: Topological Theory of Dynamical Systems, Recent Advances, North-Holland Mathematical Library, vol. 52. North-Holland, Amsterdam (1994)

  2. Bochi, J., Katok, A., Rodriguez Hertz, F.: Flexibility of Lyapunov exponents. Ergod. Theory Dyn. Syst. 42(2), 554–591 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonatti, C., Díaz, L.J., Viana, M.: Dynamics Beyond Uniform Hyperbolicity, a Global Geometric and Probabilistic Perspective, Encyclopaedia of Mathematical Sciences, vol. 102. Mathematical Physics, III. Springer, Berlin (2005)

  4. Brin, M.: On dynamical coherence. Ergod. Theory Dyn. Syst. 23(2), 395–401 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brin, M., Burago, D., Ivanov, S.: Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus. J. Model. Dyn. 3(1), 1–11 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Costa, J.S.C., Micena, F.: Some generic properties of partially hyperbolic endomorphisms. Nonlinearity 35(10), 5297–5310 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Crovisier, S., Potrie, R.: Introduction to Partially Hyperbolic Dynamics. Unpublished Course Notes. School on Dynamical Systems, ICTP, Trieste (2015)

  8. De Simoi, J., Liverani, C.: Statistical properties of mostly contracting fast-slow partially hyperbolic systems. Invent. Math. 206(1), 147–227 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. De Simoi, J., Liverani, C.: Limit theorems for fast-slow partially hyperbolic systems. Invent. Math. 213(3), 811–1016 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. de la Llave, R.: Smooth conjugacy and S–R–B measures for uniformly and non-uniformly hyperbolic systems. Comm. Math. Phys. 150(2), 289–320 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Franks, J.: Anosov diffeomorphisms on tori. Trans. Am. Math. Soc. 145, 117–124 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  12. Franks, J.: Anosov diffeomorphisms, 1970 Global Analysis (Proceedings of the Symposium Pure Mathematics, Vol. XIV, Berkeley, California, 1968), pp. 61–93. American Mathematical Society, Providence

  13. Gan, S., Ren, Y., Zhang, P.: Accessibility and homology bounded strong unstable foliation for Anosov diffeomorphisms on 3-torus. Acta Math. Sin. Engl. Ser. 33(1), 71–76 (2017)

  14. Gan, S., Shi, Y.: Rigidity of center Lyapunov exponents and \(su\)-integrability. Comment. Math. Helv. 95(3), 569–592 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gogolev, A.: Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori. J. Mod. Dyn. 2(4), 645–700 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gogolev, A.: Bootstrap for local rigidity of Anosov automorphisms on the 3-torus. Comm. Math. Phys. 352(2), 439–455 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gogolev, A., Guysinsky, M.: \(C^1\)-differentiable conjugacy of Anosov diffeomorphisms, on three dimensional torus. Discrete Contin. Dyn. Syst. 22(1–2), 183–200 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Gogolev, A., Kalinin, B., Sadovskaya, V.: Local rigidity for Anosov automorphisms. Math. Res. Lett. 18(5), 843–858 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gogolev, A., Kalinin, B., Sadovskaya, V.: Local rigidity of Lyapunov spectrum for toral automorphisms. Isr. J. Math. 238(1), 389–403 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gogolev, A., Shi, Y.: Spectrum rigidity and jointly integrability for Anosov diffeomorphisms, Preprint: arXiv: 2207.00704

  21. Hall, L., Hammerlindl, A.: Partially hyperbolic surface endomorphisms. Theory Dyn. Syst. 41(1), 272–282 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hall, L., Hammerlindl, A.: Classification of partially hyperbolic surface endomorphisms. Geom. Dedic. 216(3), Paper No. 29 (2022)

  23. Hammerlindl, A., Ures, R.: Ergodicity and partial hyperbolicity on the 3-torus. Commun. Contemp. Math. 16(4), 1350038 (2014)

  24. He, B., Shi, Y., Wang, X.: Dynamical coherence of specially absolutely partially hyperbolic endomorphisms on \({\mathbb{T} }^2\). Nonlinearity 32(5), 1695–1704 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds. Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977)

  26. Journé, J.-L.: A regularity lemma for functions of several variables. Rev. Mat. Iberoamericana 4(2), 187–193 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, with a Supplementary Chapter by Katok and Leonardo Mendoza, Encyclopedia of Mathematics and Its Applications, vol. 102. Cambridge University Press, Cambridge (1995)

  28. Mañé, R., Pugh, C.: Stability of Endomorphisms, Dynamical Systems—Warwick 1974 (Proceedings of the Symposium Applications Topology and Dynamical Systems, University of Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his Fiftieth Birthday), pp 175–184, Lecture Notes in Mathematics, vol. 468. Springer, Berlin (1975)

  29. Manning, A.: There are no new Anosov diffeomorphisms on tori. Am. J. Math. 96, 422–429 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  30. Marisa, C., Régis, V.: Anosov Endomorphisms on the 2-torus: regularity of foliations and rigidity, Preprint, arXiv: 2104.01693 (2021)

  31. Micena, F.: Rigidity for some cases of Anosov endomorphisms of torus, Preprint, arXiv:2006.00407 (2022)

  32. Micena, F., Tahzibi, A.: On the unstable directions and Lyapunov exponents of Anosov endomorphisms. Fund. Math. 235(1), 37–48 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Moosavi, S., Tajbakhsh, K.: Classification of special Anosov endomorphisms of nil-manifolds. Acta Math. Sin. Engl. Ser. 35(12), 1871–1890 (2019)

  34. Moosavi, S., Tajbakhsh, K.: Robust special Anosov endomorphisms. Commun. Korean Math. Soc. 34(3), 897–910 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Pesin, Y.: Lectures on Partial Hyperbolicity and Stable Ergodicity, Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich

  36. Przytycki, F.: Anosov endomorphisms. Stud. Math. 58(3), 249–285 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pugh, C., Shub, M.: Stably ergodic dynamical systems and partial hyperbolicity. J. Complex. 13(1), 125–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pugh, C., Shub, M., Wilkinson, A.: Hölder foliations. Duke Math. J. 86(3), 517–546 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Saghin, R., Yang, J.: Lyapunov exponents and rigidity of Anosov automorphisms and skew products. Adv. Math. 355, 106764 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sumi, N.: Linearization of Expansive Maps of Tori, Dynamical Systems and Chaos, vol. 1 (Hachioji, pp. 243–248, 1995). World Science Publications, River Edge (1994)

  41. Tsujii, M.: Physical measures for partially hyperbolic surface endomorphisms. Acta Math. 194(1), 37–132 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S. Gan was partially supported by National Key R &D Program of China (2020YFE0204200) and NSFC (11831001, 12161141002). Y. Shi was partially supported by National Key R &D Program of China (2021YFA1001900) and NSFC (12071007, 11831001, 12090015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, J., Gan, S., Gu, R. et al. Rigidity of Stable Lyapunov Exponents and Integrability for Anosov Maps. Commun. Math. Phys. 402, 2831–2877 (2023). https://doi.org/10.1007/s00220-023-04786-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04786-7

Navigation