Skip to main content
Log in

Quasi-Locality for étale Groupoids

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \(\mathcal {G}\) be a locally compact étale groupoid and \(\mathscr {L}(L^2(\mathcal {G}))\) be the \(C^*\)-algebra of adjointable operators on the Hilbert \(C^*\)-module \(L^2(\mathcal {G})\). In this paper, we discover a notion called quasi-locality for operators in \(\mathscr {L}(L^2(\mathcal {G}))\), generalising the metric space case introduced by Roe. Our main result shows that when \(\mathcal {G}\) is additionally \(\sigma \)-compact and amenable, an equivariant operator in \(\mathscr {L}(L^2(\mathcal {G}))\) belongs to the reduced groupoid \(C^*\)-algebra \(C^*_r(\mathcal {G})\) if and only if it is quasi-local. This provides a practical approach to describe elements in \(C^*_r(\mathcal {G})\) using coarse geometry. Our main tool is a description for operators in \(\mathscr {L}(L^2(\mathcal {G}))\) via their slices with the same philosophy to the computer tomography. As applications, we recover a result by Špakula and the second-named author in the metric space case, and deduce new characterisations for reduced crossed products and uniform Roe algebras for groupoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. As we shall see in Example 3.25, \(\mathcal {A}\) is smaller than \(\mathscr {B}(\ell ^2(X))\). However this does not cause any trouble when considering quasi-local operators (see Example 4.9).

  2. More precisely, Anantharaman-Delaroche [1] defined the uniform Roe algebra \(C^*_u(\mathcal {G})\) in a different way, while we show in Lemma 7.4 that it coincides with our definition.

  3. Warning: Note that our definition of \(\mathcal {G}\)-equivariant operators is not the same as the standard one considered in the literature, e.g. [23, Definition 4.6].

  4. We remark that these metrics have also been considered in [28] to study amenability for certain groupoids, using the language of length functions on groupoids.

  5. Note that the formula given in [1] is slightly different from the above, where the set \(\mathcal {G}*_{\textrm{r}} \mathcal {G}\) is considered instead of \(\mathcal {G}*_{\textrm{s}} \mathcal {G}\). Here we follow the formula from [4, Section 6.5] which is more convenient and compatible to our setting.

References

  1. Anantharaman-Delaroche, C.: Exact groupoids. Preprint arXiv:1605.05117 (2016)

  2. Anantharaman-Delaroche, C., Popa, S.: An Introduction to \(II_1\) factors (2019)

  3. Anantharaman-Delaroche, C., Renault, J.: Amenable groupoids, volume 36 of Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique]. L’Enseignement Mathématique, Geneva, (2000). With a foreword by Georges Skandalis and Appendix B by E. Germain

  4. Austin, K., Zhang, J.: Limit operator theory for groupoids. Trans. Am. Math. Soc. 373(4), 2861–2911 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bao, H., Chen, X., Zhang, J.: Strongly quasi-local algebras and their \(K\)-theories. J. Noncommut. Geom. 17(1), 241–285 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barlak, S., Li, X.: Cartan subalgebras and the UCT problem. Adv. Math. 316, 748–769 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barlak, S., Li, X.: Cartan subalgebras and the UCT problem. II. Math. Ann. 378(1), 255–287 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bachir, M., Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s property (\(T\)). New Mathematical Monographs, vol. 11. Cambridge University Press, Cambridge (2008)

  9. Brown, N.P., Ozawa, N.: \(C^*\)-algebras and finite-dimensional approximations. Graduate Studies in Mathematics, vol. 88. American Mathematical Society, Providence, RI (2008)

  10. Dixmier, J.: \(C^*\)-Algebras. North-Holland Publishing Co., Amsterdam-New York-Oxford (1977)

    MATH  Google Scholar 

  11. Dixmier, J., Douady, A.: Champs continus d’espaces hilbertiens et de \(C^{\ast }\)-algèbres. Bull. Soc. Math. France 91, 227–284 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  12. Engel, A.: Index theory of uniform pseudodifferential operators. Preprint arXiv:1502.00494, (2015)

  13. Engel, A.: Rough index theory on spaces of polynomial growth and contractibility. J. Noncommut. Geom. 13(2), 617–666 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Exel, R.: Invertibility in groupoid \(C^*\)-algebras. In: Operator Theory, Operator Algebras and Applications, volume 242 of Oper. Theory Adv. Appl., pp. 173–183. Birkhäuser/Springer, Basel (2014)

  15. Feldman, J., Moore, C.C.: Ergodic equivalence relations, cohomology, and von Neumann algebras I, II. Trans. Am. Math. Soc. 234(289–324), 325–359 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fell, J.M.G., Doran, R.S.: Representations of \(^*\)-algebras, locally compact groups, and Banach \(^*\)-algebraic bundles. Vol. 1, volume 125 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA (1988)

  17. Gomez Aparicio, M.P., Julg, P., Valette, A.: The Baum-Connes conjecture: an extended survey. In: Advances in Noncommutative Geometry. Based on the noncommutative geometry conference, Shanghai, China, March 23 – April 7, 2017. On the occasion of Alain Connes’ 70th Birthday, pp. 127–244. Springer International Publishin, Cham (2019)

  18. Gromov, M., Lawson, H.B.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ. Math. Inst. Hautes Étud. Sci. 58, 83–196 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haagerup, U., Kraus, J.: Approximation properties for group \(C^*\)-algebras and group von Neumann algebras. Trans. Am. Math. Soc. 344(2), 667–699 (1994)

    MathSciNet  MATH  Google Scholar 

  20. Kumjian, A.: On \(C^{*}\)-diagonals. Can. J. Math. 38(4), 969–1008 (1986)

    Article  MATH  Google Scholar 

  21. Lance, E.C.: Hilbert \(C^*\)-modules, volume 210 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1995)

  22. Lange, B.V., Rabinovich, V.S.: Noether property for multidimensional discrete convolution operators. Mat. Zametki 37(3), 407–421 (1985)

    MathSciNet  MATH  Google Scholar 

  23. Le Gall, P.-Y.: Théorie de Kasparov équivariante et groupoïdes I. K-Theory 16(4), 361–390 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, K., Nowak, P., Špakula, J., Zhang, J.: Quasi-local algebras and asymptotic expanders. Groups Geom. Dyn. 15(2), 655–682 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, K., Wang, Z., Zhang, J.: A quasi-local characterisation of \(L^p\)-Roe algebras. J. Math. Anal. Appl. 474(2), 1213–1237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, X.: Every classifiable simple \(C^{*}\)-algebra has a Cartan subalgebra. Invent. Math. 219(2), 653–699 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Li, X., Renault, J.: Cartan subalgebras in \(C^{*}\)-algebras: existence and uniqueness. Trans. Am. Math. Soc. 372(3), 1985–2010 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma, X., Wu, J.: Almost elementariness and fiberwise amenability for étale groupoids. Preprint arXiv:2011.01182 (2020)

  29. Markovich, M.V., Troitskii, E.V.: Hilbert C*-modules. Translated from the Russian by the authors, volume 226 of Transl. Math. Monogr. American Mathematical Society, Providence, R.I. (2005)

  30. Nekrashevych, V.: Simple groups of dynamical origin. Ergodic Theory Dyn. Syst. 39(3), 707–732 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ozawa, N.: Amenable actions and exactness for discrete groups. C. R. Acad. Sci. Paris Sér. I Math. 330(8), 691–695 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Pisier, G.: Similarity problems and completely bounded maps. Lecture Notes in Mathematics, vol. 1618. Springer-Verlag, Berlin, expanded edition (2001)

  33. Renault, J.: A groupoid approach to \(C^{*}\)-algebras. Lecture Notes in Mathematics, vol. 793. Springer, Berlin (1980)

  34. Renault, J.: Cartan subalgebras in \(C^*\)-algebras. Ir. Math. Soc. Bull. 61, 29–63 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Roe, J.: An index theorem on open manifolds I, II. J. Differ. Geom. 27(1), 87–113 (1988)

    MathSciNet  MATH  Google Scholar 

  36. Roe, J.: Lectures on coarse geometry. University Lecture Series, vol. 31. American Mathematical Society, Providence, RI (2003)

  37. Rosenberg, J.: \(C^{*}\)-algebras, positive scalar curvature, and the Novikov conjecture. Publ. Math. Inst. Hautes Étud. Sci. 58, 409–424 (1983)

    Article  MATH  Google Scholar 

  38. Skandalis, G., Tu, J.-L., Yu, G.: The coarse Baum-Connes conjecture and groupoids. Topology 41(4), 807–834 (2002)

  39. Špakula, J., Zhang, J.: Quasi-locality and property A. J. Funct. Anal. 278(1), 108299 (2020)

  40. Špakula, J., Tikuisis, A.: Relative commutant pictures of Roe algebras. Commun. Math. Phys. 365(3), 1019–1048 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Takahashi, A.: Hilbert modules and their representation. Rev. Colomb. Mat. 13, 1–38 (1979)

    MathSciNet  MATH  Google Scholar 

  42. Tu, J.-L.: The Baum-Connes conjecture for groupoids. In: C\(^*\)-algebras. Proceedings of the SFB-workshop, Münster, Germany, March 8–12, 1999, pages 227–242. Berlin: Springer (2000)

  43. Tu, J.-L.: Remarks on Yu’s “property A” for discrete metric spaces and groups. Bull. Soc. Math. France 129(1), 115–139 (2001)

  44. Valette, A.: Introduction to the Baum-Connes conjecture. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, (2002). From notes taken by Indira Chatterji, with an appendix by Guido Mislin

  45. White, S., Willett, R.: Cartan subalgebras in uniform Roe algebras. Groups Geom. Dyn. 14(3), 949–989 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Willett, R.: Some notes on property A. In: Limits of Graphs in Group Theory and Computer Science, pp. 191–281. EPFL Press, Lausanne (2009)

  47. Yu, G.: The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139(1), 201–240 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Zacharias, J.: On the invariant translation approximation property for discrete groups. Proc. Am. Math. Soc. 134(7), 1909–1916 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We appreciate the anonymous referee for a number of valuable suggestions to improve the paper, especially for suggesting us to use the notion of interior tensor product of Hilbert \(C^*\)-modules (see Remark 3.4 and 7.5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawen Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Communicated by Y. Kawahigashi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Baojie Jiang was supported by NSFC12001066 and NSFC12071183. Jiawen Zhang was supported by NSFC11871342. Jianguo Zhang was supported by NSFC12171156, 12271165. Jiawen Zhang is the corresponding author.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Zhang, J. & Zhang, J. Quasi-Locality for étale Groupoids. Commun. Math. Phys. 403, 329–379 (2023). https://doi.org/10.1007/s00220-023-04782-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04782-x

Navigation