Skip to main content
Log in

The Tensor Harish-Chandra–Itzykson–Zuber Integral II: Detecting Entanglement in Large Quantum Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the recently introduced generalization of the Harish-Chandra–Itzykson–Zuber integral to tensors and discuss its asymptotic behavior when the characteristic size N of the tensors is taken to be large. This study requires us to make assumptions on the scaling with N of the external tensors. We analyze a two-parameter class of asymptotic scaling ansätze, uncovering several non-trivial asymptotic regimes. This study is relevant for analyzing the entanglement properties of multipartite quantum systems. We discuss potential applications of our results to this domain, in particular in the context of randomized local measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. Local as opposed to global \(U(N^D)\) transformations.

  2. Seen as a trace invariant \({\textrm{Tr}}(A^n)={\textrm{Tr}}_{{{\varvec{\sigma }}}}(A)\) for any \({{\varvec{\sigma }}}=(\gamma , \ldots , \gamma )\) with \(\gamma \in S_n\) a cycle of length n.

  3. Two blocks \(B\in \Pi \) and \(B_c \in \pi _c\) are connected by an edge \(b_c\in \Pi _c\) if and only if \(b_c\subset B, B_c\), hence both B and \(B_c\) belong to the block of \( \Pi \vee \pi _1 \dots \vee \pi _D\) which contains \(b_c\).

  4. A spanning forest in a graph is a set of edges which is a spanning tree in each connected component of the graph.

  5. The subscript only indicates that they are associated to the trace-invariants of B, as opposed to the ones of A.

  6. We thank an anonymous referee for pointing out that the Brézin-Gross-Witten integral is a matrix model for which this regime is relevant [23]. We have not yet considered a BGW generalization involving tensor products of Haar-distributed unitary matrices, but this is a very natural question indeed, which we hope to address in the future.

  7. In \(D=1\) the mesoscopic and microscopic regimes collapse (see Sect. 3.3).

  8. This is particularly transparent for \(\epsilon =0\), in which case a scaling \(\beta >1\) would be realized by a tensor product states \(\otimes _c\rho _c\) with \(\rho _c\) of rank \(N^{\beta }\).

  9. Sometimes called the reduced-degree.

  10. A simple path is a sequence of edges such that two consecutive edges share a vertex, and all the vertices in the sequence are distinct.

References

  1. Harish-Chandra: Differential operators on a semisimple lie algebra. Am. J. Math. 79(1), 87–120 (1957)

  2. Itzykson, C., Zuber, J.-B.: The planar approximation. II. J. Math. Phys. 21(3), 411–421 (1980)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Collins, B., Gurau, R., Lionni, L.: The tensor Harish-Chandra–Itzykson–Zuber integral I: Weingarten calculus and a generalization of monotone Hurwitz numbers”, accepted for publication in J. Eur. Math. Soc. arXiv:2010.13661

  4. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009). arXiv:quant-ph/0702225

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Kraus, B.: Local unitary equivalence of multipartite pure states. Phys. Rev. Lett. 104, 020504 (2010). arXiv:0909.5152

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Kraus, B.: Local unitary equivalence and entanglement of multipartite pure states. Phys. Rev. A 82, 032121 (2010). arXiv:1005.5295

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Walter, M., Gross, D., Eisert, J.: Multipartite entanglement. In: Bruss, D., Leuchs, G. (eds) Quantum Information (2016). arXiv:1612.02437

  8. Dartois, S., Lionni, L., Nechita, I.: On the joint distribution of the marginals of multipartite random quantum states. Random Matrices: Theory Appl. 9(03), 2050010 (2020). arXiv:1808.08554

    Article  MathSciNet  MATH  Google Scholar 

  9. Tran, M.C., Dakić, B., Laskowski, W., Paterek, T.: Correlations between outcomes of random measurements. Phys. Rev. A 94, 042302 (2016). arXiv:1605.08529

    Article  ADS  Google Scholar 

  10. Ketterer, A., Wyderka, N., Gühne, O.: Characterizing multipartite entanglement with moments of random correlations. Phys. Rev. Lett. 122, 120505 (2019). arXiv:1808.06558

    Article  ADS  Google Scholar 

  11. Knips, L., Dziewior, J., Kłobus, W. et al.: Multipartite entanglement analysis from random correlations. npj Quantum Inf. 6, 51 (2020). arXiv:1910.10732

  12. Imai, S., Wyderka, N., Ketterer, A., Gühne, O.: Bound entanglement from randomized measurements. Phys. Rev. Lett. 126, 150501 (2021). arXiv:2010.08372

    Article  MathSciNet  ADS  Google Scholar 

  13. Ketterer, A., Wyderka, N., Gühne, O.: Entanglement characterization using quantum designs. Quantum 4, 325 (2020). arXiv:2004.08402

    Article  Google Scholar 

  14. Cavalcanti, D., Brandão, F.G.S.L., Terra Cunha, M.O.: Are all maximally entangled states pure?. Phys. Rev. A 72, 040303(R) (2005). arXiv:quant-ph/0505121

  15. Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability, vol. 13. Cambridge University Press (2006)

  16. Speicher, R.: Free probability theory and random matrices. In: Vershik, A.M., Yakubovich, Y. (eds) Asymptotic Combinatorics with Applications to Mathematical Physics. Lecture Notes in Mathematics, vol. 1815. Springer, Berlin (2003)

  17. Scott, A.J.: Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A 69, 052330 (2004). arXiv:0310137

    Article  ADS  Google Scholar 

  18. Facchi, P., Florio, G., Parisi, G., Pascazio, S.: Maximally multipartite entangled states. Phys. Rev. A 77, 060304(R) (2008). arXiv:0710.2868

    Article  MathSciNet  ADS  Google Scholar 

  19. Goyeneche, D., Zyczkowski, K.: Genuinely multipartite entangled states and orthogonal arrays. Phys. Rev. A 90, 022316 (2014). arXiv:1404.3586

    Article  ADS  Google Scholar 

  20. Zinn-Justin, P.: Adding and multiplying random matrices: a generalization of Voiculescu’s formulas. Phys. Rev. E 59(5), 4884–4888 (1999). arXiv:math-ph/9810010

    Article  MathSciNet  ADS  Google Scholar 

  21. Collins, B.: Moments and Cumulants of Polynomial random variables on unitary groups, the Itzykson–Zuber integral and free probability. Int. Math. Res. Not. 2003(17), 953–982 (2003). arXiv:math-ph/0205010

    Article  MathSciNet  MATH  Google Scholar 

  22. Collins, B., Hasebe, T., Sakuma, N.: Free probability for purely discrete eigenvalues of random matrices. J. Math. Soc. Jpn. 70(3), 1111–1150 (2018) arXiv:1512.08975

  23. Novak, J.: On the Complex Asymptotics of the HCIZ and BGW Integrals. arXiv:2006.04304

  24. Goulden, I., Guay-Paquet, M., Novak, J.: Monotone Hurwitz Numbers and the HCIZ Integral II (2011) arXiv:1107.1001

  25. Fusy, E., Lionni, L., Tanasa, A.: Combinatorial study of graphs arising from the Sachdev-Ye-kitaev model. Eur. J. Combin. 86, 103066 (2020) arXiv:1810.02146

  26. Gurau, R., Ryan, J.P.: Colored tensor models: a review. SIGMA 8, 020 (2012). arXiv:1109.4812

    MathSciNet  MATH  Google Scholar 

  27. Gurau, R.: Notes on tensor models and tensor field theories. Ann. Inst. H. Poincaré D, Comb. Phys. Interact. 9, 159–218 (2022). arXiv:1907.03531

Download references

Acknowledgements

B.C. was partially supported by JSPS Kakenhi 17H04823, 20K20882, 21H00987, and by the Japan-France Integrated action Program (SAKURA), Grant number JPJSBP120203202. R.G. and L.L. are supported by the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No818066) and by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC-2181/1 - 390900948 (the Heidelberg STRUCTURES Cluster of Excellence). During most of this project, L.L. was at Radboud University, supported by the START-UP 2018 programme with project number 740.018.017, financed by the Dutch Research Council (NWO). L.L. thanks JSPS and Kyoto University, where the discussions at the origin of this project took place. The authors have no relevant financial or non-financial interests to disclose. Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Asymptotic Regimes for D = 1, Proof of Theorem 3

The asymptotic expansion of the cumulants of the tensor HCIZ integral (3.3) for \(D=1\) reads:

$$\begin{aligned}{} & {} C_n\bigl ( {N^{{\gamma _{{}_{\beta \epsilon } }}}}{\textrm{Tr}}(AUBU^* )\bigr )\\{} & {} \quad = N^{n( {\gamma _{{}_{\beta \epsilon } }}- 2 ) }\sum _{ \sigma ,\tau \in S_n} N^{s(\sigma , \tau ) +s_A(\sigma ) + s_B(\tau )} {\textrm{tr}}_{\sigma }({a}) \, {\textrm{tr}}_{\tau }({b}) f[\sigma , \tau ](1+O(1)) , \end{aligned}$$

where (2.4) and the asymptotic scaling ansatz are:

$$\begin{aligned} s(\sigma , \tau ) = \#(\sigma \tau ^{-1})- 2 \big [ |\Pi (\sigma , \tau )|-1 \big ] , \qquad \text {and} \qquad s_A(\sigma )=\beta _A \#(\sigma ) \;, \end{aligned}$$

and similarly for B. Using (4.7), we rewrite the exponent of N in a term as:

$$\begin{aligned} 2 + n({\gamma _{{}_{\beta \epsilon } }}- 1) - 2g(\sigma ,\tau ) - (1 - \beta _A ) \#(\sigma ) - (1 - \beta _B) \#(\tau ) , \end{aligned}$$
(A.1)

where \(g(\sigma , \tau )\) is the genus of the embedded map \((\sigma , \tau )\) discussed in Sect. 4.4. The scaling always selects planar graphs \((\sigma ,\tau )\) and favors for \(\beta < 1 \) cyclic permutations, for \(1<\beta \) the identity permutation, and for \(\beta =1\) it is insensitive to the number of cycles of the permutations:

  1. 1.

    If \(\beta _A=\beta _B=1\), (A.1) becomes \(2 + n({\gamma _{{}_{\beta \epsilon } }}- 1) - 2g(\sigma , \tau )\), so that \({\gamma _{{}_{\beta \epsilon } }}=1\), \({\delta _{{}_{\beta \epsilon } }}= 2\), and the leading order graphs are \((\sigma ,\tau )\) planar.

  2. 2.

    If \(\beta _A<\beta _B=1\), (A.1) is \(\beta _A + 1 + n({\gamma _{{}_{\beta \epsilon } }}- 1) - 2\,g(\sigma , \tau ) - (1-\beta _A) (\#(\sigma )-1) \), so that \({\gamma _{{}_{\beta \epsilon } }}= 1\), \({\delta _{{}_{\beta \epsilon } }}= \beta _A+1\) and at leading order \(g(\sigma , \tau )=0\) and \(\#(\sigma )=1\). From Proposition 4.3, \(\tau \) is non-crossing on \(\sigma \) and from Theorem 1, \(f[\sigma , \tau ] = \textsf{M}(\sigma \tau ^{-1})\).

  3. 3.

    If \(\beta _A\le \beta _B<1\), we write (A.1) as:

    $$\begin{aligned} \beta _A + \beta _B + n({\gamma _{{}_{\beta \epsilon } }}-1 ) - 2g(\sigma , \tau ) - ( 1-\beta _A) (\#(\sigma )-1) - (1-\beta _B) (\#(\tau )-1) \;, \end{aligned}$$

    hence \({\delta _{{}_{\beta \epsilon } }}= \beta _A + \beta _B\), \({\gamma _{{}_{\beta \epsilon } }}= 1\) and at leading order \(g(\sigma , \tau ) =0\) and \(\#(\sigma )=\#(\tau )=1\). From Prop. 4.4\(\sigma =\tau \) and from Theorem 1\(f \bigl [\sigma , \tau \bigr ]=1\).

  4. 4.

    If \(\beta _A< 1 <\beta _B\), we write (A.1) as:

    $$\begin{aligned} \beta _A + 1 + n({\gamma _{{}_{\beta \epsilon } }}+ \beta _B - 2 ) - 2g(\sigma , \tau ) - ( 1-\beta _A) (\#(\sigma )-1) - (\beta _B-1) (n- \#(\tau )) \;, \end{aligned}$$

    hence \({\delta _{{}_{\beta \epsilon } }}= \beta _A+1\), \({\gamma _{{}_{\beta \epsilon } }}= 2-\beta _B\), and at leading order \(\#(\tau )=n\), i.e. \(\tau = \textrm{id}\), and \(\#(\sigma )=1\). From Theorem 1, \(f[\sigma , {\textrm{id}}] = \textsf{M}(\sigma ) = \frac{(-1)^{n-1}}{n}\left( {\begin{array}{c}2n-2\\ n-1\end{array}}\right) \) since \(\#(\sigma )=1\). As in the regime 2, the contribution is the same for all cycles.

  5. 5.

    If \(\beta _A =1 <\beta _B\), we write (A.1) as \(2 + n({\gamma _{{}_{\beta \epsilon } }}+ \beta _B - 2 ) - 2\,g(\sigma , \tau ) - (\beta _B-1) (n- \#(\tau )) \), hence \({\delta _{{}_{\beta \epsilon } }}= 2\), \({\gamma _{{}_{\beta \epsilon } }}= 2-\beta _B\), and at leading order \(\#(\tau )=n\), i.e. \(\tau = \textrm{id}\), and \(\sigma \) is arbitrary.

  6. 6.

    If \(1<\beta _A \le \beta _B\), we write (A.1) as:

    $$\begin{aligned} 2 + n({\gamma _{{}_{\beta \epsilon } }}+ \beta _A + \beta _B - 3 ) - 2g(\sigma , \tau ) - (\beta _A -1)(n - \#(\sigma )) - (\beta _B -1)(n - \#(\tau ) ) , \end{aligned}$$

    hence \({\delta _{{}_{\beta \epsilon } }}=2\), \({\gamma _{{}_{\beta \epsilon } }}=3-\beta _A-\beta _B\). At leading order, \(\sigma =\tau ={\textrm{id}}\) and \(f[{\textrm{id}}, {\textrm{id}}]\) follows from Theorem 1.

This concludes the proof of Theorem 3.

Proof of Theorem 6: Regimes with A Microscopic

We check the rest of the regimes in Theorem 6.

1.1 Regime II

Lemma B.1

For \(\beta =1-\epsilon (D-1)>\frac{1}{D}\) and \(\epsilon \ge 0\), the leading order graphs are the \(({{\varvec{\sigma }}}, {{\varvec{\tau }}})\) with \({{\varvec{\sigma }}}\) connected \((D+1)\)-melonic and \({{\varvec{\tau }}}\preceq {{\varvec{\sigma }}}\):

$$\begin{aligned}{} & {} \lim _{N\rightarrow +\infty } \frac{1}{N } C_n\Bigl ( N^{1 + \epsilon \frac{D(D-1)}{2}}{\textrm{Tr}}(AUBU^* )\Bigr )\\{} & {} \quad = \sum _{ \begin{array}{c} {{{\varvec{\sigma }}}\, \in { {\varvec{S}} } _n \text { connected} }\\ { (D+1)\text {-melonic}} \end{array}} \, \sum _{ \begin{array}{c} {{{\varvec{\tau }}},\; {{\varvec{\tau }}}\preceq {{\varvec{\sigma }}}} \end{array}}\, {\textrm{tr}}_{{{\varvec{\sigma }}}}({a}) \, {\textrm{tr}}_{{{\varvec{\tau }}}^{-1}} ({b}) \, \prod _{c=1}^D \textsf{M}(\sigma _c \tau _c^{-1}). \end{aligned}$$

Proof

Using \(\omega ({{\varvec{\tau }}})\) (4.5), \(\Box _{{{\varvec{\tau }}}}\) (4.9), and \({\Delta }\) (4.8), the scaling in (5.1) reads:

$$\begin{aligned}&1 + n\bigl [ {\gamma _{{}_{\beta \epsilon } }}-D + \epsilon \frac{D(D-1)}{2} + (1-\epsilon D)(D-1)\bigr ] - (|\Pi ({{\varvec{\sigma }}}, {{\varvec{\tau }}})|- 1) \\&\qquad \quad -\sum _c\bigl ( 2g(\sigma _c, \tau _c) +\#(\sigma _c) - |\Pi (\sigma _c, \tau _c)|\bigr ) - \epsilon \omega ({{\varvec{\tau }}}) - \epsilon D \Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}}, {{\varvec{\tau }}})\\&\quad -(1-\epsilon D){\Delta }({{\varvec{\sigma }}}, {{\varvec{\tau }}}) \;, \end{aligned}$$

thus \(\Pi ({{\varvec{\sigma }}},{{\varvec{\tau }}})=1\) and from Proposition 4.4 we get \({{\varvec{\tau }}}\preceq {{\varvec{\sigma }}}\) and \(\Pi ({{\varvec{\sigma }}}) = \Pi ({{\varvec{\sigma }}},{{\varvec{\tau }}}) =1\). As \({{\varvec{\tau }}}\preceq {{\varvec{\sigma }}}\), from Proposition 4.8 we get that \( {\Delta }({{\varvec{\sigma }}}, {{\varvec{\tau }}})=0\) if and only if \({{\varvec{\sigma }}}\) is \((D+1)\)-melonic. On the other hand, \( {\Delta }({{\varvec{\sigma }}}, {{\varvec{\tau }}}) = 0\) ensures that \(\Omega _{D+1}({{\varvec{\tau }}})=0\), hence \(\omega ({{\varvec{\tau }}})=0\). \(\square \)

1.2 Regime III

Lemma B.2

For \(0<\beta =\epsilon <1/D \), the leading order graphs are \(({{\varvec{\sigma }}}, {{\varvec{\sigma }}})\) with \({{\varvec{\sigma }}}\) connected melonic:

$$\begin{aligned} \lim _{N\rightarrow +\infty } \frac{1}{N^{\epsilon D} } C_n\Bigl ( N^{D- \epsilon \frac{D(D-1)}{2} }{\textrm{Tr}}(AUBU^* )\Bigr ) = \sum _{ \begin{array}{c} {{{\varvec{\sigma }}}\, \in \, { {\varvec{S}} } _n \text {connected} }\\ {\text {melonic}} \end{array}} {\textrm{tr}}_{{{\varvec{\sigma }}}}({a}) \, {\textrm{tr}}_{{{\varvec{\sigma }}}^{-1}} ({b}). \end{aligned}$$

Proof

Using (4.5), (4.9) and (4.8), we rewrite (5.1) as:

$$\begin{aligned}&\epsilon D + n\bigl [ {\gamma _{{}_{\beta \epsilon } }}-D + \epsilon \frac{D(D-1)}{2}\bigr ] -\sum _c\Bigl ( 2g(\sigma _c, \tau _c) +\#(\sigma _c) - |\Pi (\sigma _c, \tau _c)|\Bigr ) - \epsilon \omega ({{\varvec{\tau }}}) \\& - (2- \epsilon D) (|\Pi ({{\varvec{\sigma }}}, {{\varvec{\tau }}})|- 1) - \epsilon D\, \Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}}, {{\varvec{\tau }}})\\&\qquad \quad -(1-\epsilon D)\sum _c\bigl [\#(\tau _c) - |\Pi (\sigma _c, \tau _c)|\bigr ] \; . \end{aligned}$$

From Proposition 4.4 we conclude that \({{\varvec{\tau }}}= {{\varvec{\sigma }}}\) and the lemma follows. \(\square \)

1.3 Regime IV

Lemma B.3

For \(0\le \epsilon<\beta <1-\epsilon (D-1)\), the leading order graphs are the \(({{\varvec{\sigma }}}, {{\varvec{\sigma }}})\) with \({{\varvec{\sigma }}}\) connected \((D+1)\)-melonic, and:

$$\begin{aligned} \lim _{N\rightarrow +\infty } \frac{1}{N^{\beta + \epsilon (D-1)} } C_n\Biggl ( \frac{N^D}{N^{(D-1)(\beta -\epsilon + \frac{\epsilon D}{2} )}}{\textrm{Tr}}(AUBU^* )\Biggr ) = \sum _{ \begin{array}{c} {{{\varvec{\sigma }}}\,\in { {\varvec{S}} } _n \text { connected} }\\ { (D+1)\text {-melonic}} \end{array}} {\textrm{tr}}_{{{\varvec{\sigma }}}}({a}) \, {\textrm{tr}}_{{{\varvec{\sigma }}}^{-1}} ({b}) . \end{aligned}$$

Proof

Using the expressions for \(\omega ({{\varvec{\tau }}})\) (4.5), \(\Omega _{D+1}({{\varvec{\tau }}})\) (4.6) and \(\Box _{{{\varvec{\tau }}}}\) (4.9), the scaling in N in (5.1) becomes:

$$\begin{aligned}&\beta + \epsilon (D-1) + n\bigl [ {\gamma _{{}_{\beta \epsilon } }}-D + \epsilon \frac{D(D-1)}{2} + (\beta -\epsilon )(D-1)\bigr ] \\ {}&\qquad - (|\Pi ({{\varvec{\sigma }}}, {{\varvec{\tau }}})|- 1)- \epsilon \omega ({{\varvec{\tau }}}) -\sum _c\bigl ( 2g(\sigma _c, \tau _c) + \#(\sigma _c) - |\Pi (\sigma _c, \tau _c)|\bigr ) \\ {}&\qquad \qquad - \Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}}, {{\varvec{\tau }}}) -(\beta -\epsilon )\Omega _{D+1}({{\varvec{\tau }}}) -(1+\epsilon - \beta - \epsilon D)(|\Pi ({{\varvec{\tau }}})|-1) . \end{aligned}$$

The leading order graphs are connected. Moreover, since \(1+\epsilon - \beta - \epsilon D>0\), they have \(|\Pi ({{\varvec{\tau }}})|=1\), so that \( \Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}}, {{\varvec{\tau }}}) = \sum _c\bigl [\#(\tau _c) - |\Pi (\sigma _c, \tau _c)|\bigr ] =0\). As \(g(\sigma _c, \tau _c)=0\) and \(\#(\sigma _c) - |\Pi (\sigma _c, \tau _c)|=0\), from Proposition 4.4 we conclude that \({{\varvec{\tau }}}={{\varvec{\sigma }}}\). Taking into account that \(\Omega _{D+1}({{\varvec{\tau }}})=0 \Rightarrow \omega ({{\varvec{\tau }}})=0\), we conclude that \({{\varvec{\sigma }}}={{\varvec{\tau }}}\) and \({{\varvec{\sigma }}}\) is a connected \((D+1)\)-melonic graph. \(\square \)

1.4 Regime V

Lemma B.4

For \(\epsilon > \beta \), \(\epsilon > 0\) and \(\beta < 1/D \), the leading order graphs are such that all the \(\sigma _c,\tau _c\) are the same cycle:

$$\begin{aligned} \lim _{N\rightarrow +\infty } \frac{1}{N^{\beta D} } C_n\Bigl ( N^{D- \epsilon \frac{D(D-1)}{2} }{\textrm{Tr}}(AUBU^* )\Bigr ) = (n-1)! \ {\textrm{tr}}({a}^n) \, {\textrm{tr}}({b}^n). \end{aligned}$$

Proof

For \(\epsilon > \max (\beta , 0)\) and \(\beta < 1/D\), we rewrite (5.1) as:

$$\begin{aligned}&\beta D + n\bigl [ {\gamma _{{}_{\beta \epsilon } }}-D + \epsilon \frac{D(D-1)}{2}\bigr ] -\sum _c\bigl ( 2g(\sigma _c, \tau _c) + \#(\sigma _c) - |\Pi (\sigma _c, \tau _c)|\bigr ) - (|\Pi ({{\varvec{\sigma }}}, {{\varvec{\tau }}})|- 1) \\&\qquad - \epsilon \omega ({{\varvec{\tau }}}) - \Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}}, {{\varvec{\tau }}}) -(\epsilon - \beta )\bigl [\sum _c\#(\tau _c) - D|\Pi ({{\varvec{\tau }}})|\bigr ] - (1 - \beta D) (|\Pi ({{\varvec{\tau }}})|-1) \; . \end{aligned}$$

At leading order, \(|\Pi ({{\varvec{\tau }}})|=1\), so that \(\sum _c\#(\tau _c) - D|\Pi ({{\varvec{\tau }}})|=\sum _c\#(\tau _c) - D \), which vanishes if and only if for all c, \(\tau _c\) is a cycle of length n. Since \(\tau _c\preceq \sigma _c\), this imposes that \(\sigma _c=\tau _c\), which implies \(\Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}}, {{\varvec{\tau }}})=0\). Finally, from (4.5), \(\omega ({{\varvec{\tau }}})=0\) and each \(\tau _c\) is a cycle if and only if all the \(\tau _c\) are equal.\(\square \)

1.5 Regime VII

Lemma B.5

For \(\epsilon > \beta = 1/D\), the leading order graphs are such that \({{\varvec{\tau }}}= (\tau , \dots , \tau )\) for some \(\tau \in S_n\), \({{\varvec{\sigma }}}\) is connected, \({{\varvec{\tau }}}\preceq {{\varvec{\sigma }}}\), and \(\Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}},{{\varvec{\tau }}})=0\):

$$\begin{aligned}{} & {} \lim _{N\rightarrow +\infty } \frac{1}{N} C_n\Bigl ( N^{D- \epsilon \frac{D(D-1)}{2} }{\textrm{Tr}}(AUBU^* )\Bigr ) \\{} & {} \quad = \sum _{ \begin{array}{c} {{{\varvec{\sigma }}}\, \in { {\varvec{S}} } _n}\\ {\text {connected}} \end{array}} \; \sum _{ \begin{array}{c} { {{\varvec{\tau }}}= (\tau ,\dots ,\tau ), \, \tau \in S_n, }\\ {{{\varvec{\tau }}}\preceq {{\varvec{\sigma }}}, \; \Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}},{{\varvec{\tau }}})=0 } \end{array} } {\textrm{tr}}_{{{\varvec{\sigma }}}}({a}) \, {\textrm{tr}}_{{{\varvec{\tau }}}^{-1}} ({b}) \, \prod _{c=1}^D \textsf{M}(\sigma _c \tau _c^{-1}). \end{aligned}$$

The leading order graph include \(({{\varvec{\sigma }}}, \textbf{id} )\) with \({{\varvec{\sigma }}}\) connected \((D+1)\)-melonic and \(\textbf{id}=({\textrm{id}}, \dots , {\textrm{id}}) \in { {\varvec{S}} } _n\).

Proof

For \(\epsilon > \beta \) and \(\beta =1/D\), we rewrite (5.1) as:

$$\begin{aligned}&1 + n\bigl [ {\gamma _{{}_{\beta \epsilon } }}-D + \epsilon \frac{D(D-1)}{2}\bigr ] -\sum _c\bigl ( 2g(\sigma _c, \tau _c) + \#(\sigma _c) - |\Pi (\sigma _c, \tau _c)|\bigr ) - (|\Pi ({{\varvec{\sigma }}}, {{\varvec{\tau }}})|- 1) \\&\qquad - \epsilon \omega ({{\varvec{\tau }}}) - \Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}}, {{\varvec{\tau }}}) -(\epsilon - \frac{1}{D})\bigl [\sum _c\#(\tau _c) - D|\Pi ({{\varvec{\tau }}})|\bigr ] \; . \end{aligned}$$

The leading order graphs \(({{\varvec{\sigma }}},{{\varvec{\tau }}})\) are connected, and from Proposition 4.4 they satisfy \({{\varvec{\tau }}}\preceq {{\varvec{\sigma }}}\) and \(\Pi ({{\varvec{\sigma }}})=1\). From (4.5), we note that \({{\varvec{\tau }}}\) satisfies \(\omega ({{\varvec{\tau }}})=0\) and \(\sum _c\#(\tau _c) = D|\Pi ({{\varvec{\tau }}})|\) if and only if all \(\tau _c =\tau \) from some \(\tau \in S_n\).

The last assertion follows by noting that \(\textbf{id} \preceq {{\varvec{\sigma }}}\); (4.6) and (4.8) imply that \({\Delta }({{\varvec{\sigma }}},\textbf{id} ) = \Omega _{D+1}({{\varvec{\sigma }}}) \), and from Proposition 4.8, \(\Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}}, \textbf{id} )=0\) if and only if \({\Delta }({{\varvec{\sigma }}},\textbf{id}) = 0 \). \(\square \)

1.6 Regime VIII

Lemma B.6

For \(\epsilon \ge \frac{1}{D}\), \(\beta > \frac{1}{D}\), and \(0\le \epsilon < \frac{1}{D}\), \(\beta > 1- \epsilon (D-1)\), the leading order graphs are \(({{\varvec{\sigma }}}, {{\varvec{\tau }}})\) with \({{\varvec{\sigma }}}\) connected \((D+1)\)-melonic, and \(\tau _c = {\textrm{id}}\) for every c:

$$\begin{aligned} \lim _{N\rightarrow +\infty } \frac{1}{N } C_n\Biggl ( \frac{N^{D+1}}{N^{\epsilon \frac{D(D-1)}{2} + \beta D}}{\textrm{Tr}}(AUBU^* )\Biggr ) = {\textrm{tr}}({b})^n \sum _{ \begin{array}{c} {{{\varvec{\sigma }}}\, \in \, { {\varvec{S}} } _n\text { connected} }\\ { (D+1)\text {-melonic}} \end{array}} {\textrm{tr}}_{{{\varvec{\sigma }}}}({a}) \, \prod _{c=1}^D \textsf{M}(\sigma _c). \end{aligned}$$

Proof

We divide the proof for this regime in two regions: \(\epsilon \ge 1/D \) and \(\beta > 1/D\) on one hand, and \(0\le \epsilon < 1/D \) and \(\beta > 1- \epsilon (D-1)\) on the other hand.

For \(\epsilon \ge 1/D \) and \(\beta > 1/D \), we rewrite the scaling with N in (5.1) as:

$$\begin{aligned}&1 + n\bigl [ {\gamma _{{}_{\beta \epsilon } }}-D + \epsilon \frac{D(D-1)}{2} + \beta D- 1\bigr ] -\sum _c\bigl ( 2g(\sigma _c, \tau _c) +\#(\sigma _c) - |\Pi (\sigma _c, \tau _c)|\bigr ) - \epsilon \omega ({{\varvec{\tau }}})\\& - (|\Pi ({{\varvec{\sigma }}}, {{\varvec{\tau }}})|- 1) - \Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}}, {{\varvec{\tau }}}) \\&\qquad - (\beta - \frac{1}{D} )\sum _c(n- \#(\tau _c)) -(\epsilon - \frac{1}{D})(\sum _c \#(\tau _c) - D|\Pi ({{\varvec{\tau }}})|) \; . \end{aligned}$$

The leading order graphs are connected and such that for all c, \(\#(\tau _c)=n\), that is, \(\tau _c={\textrm{id}}\). From (4.9), we have \(\Box _{{{\varvec{\sigma }}}}({{\varvec{\sigma }}},{{\varvec{\tau }}})=0\), that is, \({\Delta }({{\varvec{\sigma }}},{{\varvec{\tau }}}) = \Omega _{D+1}({{\varvec{\sigma }}})\), while from Proposition 4.8 we get \(\Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}},{{\varvec{\tau }}}) = {\Delta }({{\varvec{\sigma }}},{{\varvec{\tau }}})\). It follows that at leading order, \({{\varvec{\sigma }}}\) is \((D+1)\)-melonic and connected (as \(\Pi ({{\varvec{\sigma }}},{{\varvec{\tau }}})=1\)). For \(0\le \epsilon < 1/D\) and \(\beta > 1- \epsilon (D-1)\), we follow the same reasoning starting from rewriting (5.1) as:

$$\begin{aligned}&1+ n\Bigl [ {\gamma _{{}_{\beta \epsilon } }}-D + \epsilon \frac{D(D-1)}{2} + (1-\epsilon D)(D- 1) + (\beta - \epsilon + \epsilon D - 1)D\Bigr ] - (|\Pi ({{\varvec{\sigma }}}, {{\varvec{\tau }}})|- 1) \\&\qquad - \sum _c \bigl ( 2g(\sigma _c, \tau _c) + \#(\sigma _c) - |\Pi (\sigma _c, \tau _c)|\bigr )- (\beta - \epsilon + \epsilon D - 1)\sum _c\bigl (n - \#(\tau _c)\bigr )\\ {}& - \epsilon \omega ({{\varvec{\tau }}}) - \epsilon D\, \Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}}, {{\varvec{\tau }}}) - (1 - \epsilon D ){\Delta }({{\varvec{\sigma }}}, {{\varvec{\tau }}}) \; . \end{aligned}$$

\(\square \)

Proof of Theorem 7: Symmetric Regimes

We now check the rest of the regimes in Theorem 7.

1.1 Regime S-II

Lemma C.1

For \(\beta =1-\epsilon (D-1)> 1/D\) and \(\epsilon \ge 0\), we have:

$$\begin{aligned} \lim _{N\rightarrow +\infty } \frac{1}{N^2 } C_n\bigl ( N^{2-D + \epsilon D (D-1)}{\textrm{Tr}}(AUBU^* )\bigr ) = \sum _{ \begin{array}{c} {{{\varvec{\sigma }}}, {{\varvec{\tau }}}\, \in \, { {\varvec{S}} } _n }\\ { {\Delta }({{\varvec{\sigma }}}, {{\varvec{\tau }}}) =0 }\\ {\forall c,\, g(\sigma _c, \tau _c)=0 } \end{array}} \, {\textrm{tr}}_{{{\varvec{\sigma }}}}({a}) \, {\textrm{tr}}_{{{\varvec{\tau }}}^{-1}} ({b}) \, f \bigl [\mathrm {{{\varvec{\sigma }}}, {{\varvec{\tau }}}}\bigr ] . \end{aligned}$$

Proof

Using \(\omega ({{\varvec{\tau }}})\) from (4.5), \(\Box \) from Proposition 4.8, \(\Box _{{{\varvec{\tau }}}}\) from (4.9), and \({\Delta }\) from (4.8), we rewrite (5.1) as:

$$\begin{aligned}&2 + n\bigl [ {\gamma _{{}_{\beta \epsilon } }}-D + \epsilon D(D-1) + 2(1-\epsilon D)(D-1)\bigr ] \\&\qquad \quad - 2 \sum _c g(\sigma _c, \tau _c) - \epsilon (\omega ({{\varvec{\sigma }}}) + \omega ({{\varvec{\tau }}})) - 2\epsilon D\, \Box ({{\varvec{\sigma }}}, {{\varvec{\tau }}})- 2 (1-\epsilon D){\Delta }({{\varvec{\sigma }}}, {{\varvec{\tau }}}) \; . \end{aligned}$$

From Proposition 4.8, \({\Delta }({{\varvec{\sigma }}}, {{\varvec{\tau }}})=0\) implies that both \(\Box ({{\varvec{\sigma }}}, {{\varvec{\tau }}})=0\) and \(\Omega _{D+1}({{\varvec{\sigma }}})=\Omega _{D+1}({{\varvec{\tau }}}) =0\), which from Proposition 4.2 implies that \(\omega ({{\varvec{\sigma }}})=\omega ({{\varvec{\tau }}})=0\). \(\square \)

1.2 Regime S-III

Lemma C.2

For \(\beta _A=\beta _B=\epsilon _A=\epsilon _B=\epsilon \), with \(0<\epsilon < 1/D \), the leading order graphs are the \(({{\varvec{\sigma }}}, {{\varvec{\sigma }}})\), with \({{\varvec{\sigma }}}\) a connected melonic graph:

$$\begin{aligned} \begin{aligned} \lim _{N\rightarrow +\infty } \frac{1}{N^{2\epsilon D} } C_n\Bigl ( N^{D(1- \epsilon (D-1) }{\textrm{Tr}}(AUBU^* )\Bigr ) = \sum _{ \begin{array}{c} {{{\varvec{\sigma }}}\, \in \, { {\varvec{S}} } _n \text { connected}} \\ {\omega ({{\varvec{\sigma }}})=0} \end{array}} {\textrm{tr}}_{{{\varvec{\sigma }}}}({a}) \, {\textrm{tr}}_{{{\varvec{\sigma }}}^{-1}} ({b}) \;. \end{aligned} \end{aligned}$$

Proof

In this regime, the scaling in (5.1) reads:

$$\begin{aligned}&2\epsilon D + n\bigl [ {\gamma _{{}_{\beta \epsilon } }}-D + \epsilon D(D-1)\bigr ] - 2 \sum _c g(\sigma _c, \tau _c) - \epsilon \bigl (\omega ({{\varvec{\sigma }}}) + \omega ({{\varvec{\tau }}})\bigr )\\&\qquad - 2(1- \epsilon D) \bigl (|\Pi ({{\varvec{\sigma }}}, {{\varvec{\tau }}})|- 1\bigr ) \\&\qquad - 2\epsilon D\, \Box ({{\varvec{\sigma }}}, {{\varvec{\tau }}}) -(1-\epsilon D)\sum _c\bigl [\#(\sigma _c) + \#(\tau _c) - 2 |\Pi (\sigma _c, \tau _c)|\bigr ] \; . \end{aligned}$$

The leading order graphs have \(\omega ({{\varvec{\sigma }}})=0\). They also have \(g(\sigma _c, \tau _c)=0\), \(\#(\sigma _c) - |\Pi (\sigma _c, \tau _c)|=0\), and \(\#(\tau _c) - |\Pi (\sigma _c, \tau _c)|=0 \), and hence have \({{\varvec{\sigma }}}= {{\varvec{\tau }}}\) (Proposition 4.4) and are connected. But then \(|\Pi ({{\varvec{\tau }}})|= |\Pi ({{\varvec{\sigma }}})|=1\), so that \(\Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}}, {{\varvec{\tau }}}) = \sum _c\bigl [\#(\tau _c) - |\Pi (\sigma _c, \tau _c)|\bigr ]\) and \(\Box _{{{\varvec{\sigma }}}}({{\varvec{\sigma }}}, {{\varvec{\tau }}}) = \sum _c\bigl [\#(\sigma _c) - |\Pi (\sigma _c, \tau _c)|\bigr ]\).\(\square \)

1.3 Regime S-IV

Lemma C.3

For \(\beta _A=\beta _B=\beta \) and \(\epsilon _A=\epsilon _B=\epsilon \), with \(0\le \epsilon<\beta <1-\epsilon (D-1) \), the leading order graphs are the \(({{\varvec{\sigma }}}, {{\varvec{\sigma }}})\) with \({{\varvec{\sigma }}}\) a connected \((D+1)\)-melonic graph:

$$\begin{aligned}{} & {} \lim _{N\rightarrow +\infty } \frac{1}{N ^{2( \beta + \epsilon (D-1))}} C_n\Bigl ( \frac{N^{D}}{N^{(D-1)(\epsilon (D-2) + 2 \beta )}}{\textrm{Tr}}(AUBU^* )\Bigr ) \\{} & {} \quad = \sum _{ \begin{array}{c} {{{\varvec{\sigma }}}\,\in { {\varvec{S}} } _n \text { connected} }\\ { (D+1)\text {-melonic}} \end{array}} {\textrm{tr}}_{{{\varvec{\sigma }}}}({a}) \, {\textrm{tr}}_{{{\varvec{\sigma }}}^{-1}} ({b}) . \end{aligned}$$

Proof

Using \(\omega ({{\varvec{\tau }}})\) from (4.5), \(\Box \) from Proposition 4.8, \(\Box _{{{\varvec{\tau }}}}\) from (4.9), and \(\Omega _{D+1}({{\varvec{\tau }}})\) from (4.6), we rewrite (5.1) as:

$$\begin{aligned}&2\beta + 2\epsilon (D-1)+ n\bigl ({\gamma _{{}_{\beta \epsilon } }}- D + \epsilon D (D-1) + 2(\beta - \epsilon )(D-1) \bigr ) -2\sum _c g(\sigma _c, \tau _c) \\ {}&\qquad - \epsilon (\omega ({{\varvec{\tau }}}) + \omega ({{\varvec{\sigma }}})) - (\beta - \epsilon )(\Omega _{D+1}({{\varvec{\sigma }}}) + \Omega _{D+1}({{\varvec{\tau }}}) ) - 2\, \Box ({{\varvec{\sigma }}}, {{\varvec{\tau }}}) \\&\qquad \qquad -(1+\epsilon - \beta - \epsilon D)(|\Pi ({{\varvec{\tau }}})|+ |\Pi ({{\varvec{\sigma }}})|- 2) \; . \end{aligned}$$

Since \(1+\epsilon - \beta - \epsilon D>0\), at leading order we have \(|\Pi ({{\varvec{\tau }}})|=|\Pi ({{\varvec{\sigma }}})|=1\), so that:

$$\begin{aligned}{} & {} \Box _{{{\varvec{\tau }}}}({{\varvec{\sigma }}}, {{\varvec{\tau }}}) = \sum _c\bigl [\#(\tau _c) - |\Pi (\sigma _c, \tau _c)|\bigr ] =0, \qquad \textrm{and} \qquad \\{} & {} \quad \Box _{{{\varvec{\sigma }}}}({{\varvec{\sigma }}}, {{\varvec{\tau }}}) = \sum _c\bigl [\#(\sigma _c) - |\Pi (\sigma _c, \tau _c)|\bigr ] =0 \;, \end{aligned}$$

which together with \(g(\sigma _c,\tau _c)=0\) imposes that \({{\varvec{\sigma }}}= {{\varvec{\tau }}}\) (Proposition 4.4). As (see Proposition 4.2) \(\Omega _{D+1}({{\varvec{\tau }}})=0\) implies \(\omega ({{\varvec{\tau }}})=0\), we find that at leading order \({{\varvec{\sigma }}}\) is connected \((D+1)\)-melonic, and \({{\varvec{\tau }}}= {{\varvec{\sigma }}}\). \(\square \)

1.4 Regime S-V

Lemma C.4

For \(\epsilon > \beta \), \(\epsilon >0\) and \(\beta < 1/D\), the leading order graphs are such that all the \(\tau _c,\sigma _c\) are the same cycle, and:

$$\begin{aligned} \lim _{N\rightarrow +\infty } \frac{1}{N^{2\beta D} } C_n\Bigl ( N^{D(1- \epsilon (D-1)) }{\textrm{Tr}}(AUBU^* )\Bigr ) = (n-1)! \ {\textrm{tr}}({a}^n) \, {\textrm{tr}}({b}^n) \;. \end{aligned}$$

Proof

For \(\epsilon > \beta \) and \(\beta < 1/D \) we rewrite (5.1) as:

$$\begin{aligned}&2\beta D \!+\! n\bigl [ {\gamma _{{}_{\beta \epsilon } }}\!-\!D \!+\! \epsilon D(D-1)\bigr ] \! -\!(\epsilon \!-\! \beta )\bigl [\sum _c \bigl (\#(\sigma _c) \!+\! \#(\tau _c)\bigr )\! -\! D\bigl (|\Pi ({{\varvec{\sigma }}})|\! + \!|\Pi ({{\varvec{\tau }}})|\bigr )\bigr ] \\&\qquad \!-\sum _c 2g(\sigma _c, \!\tau _c)\!-\! \epsilon (\omega ({{\varvec{\sigma }}}) \!+\! \omega ({{\varvec{\tau }}})) \!-\! 2\!\,\Box ({{\varvec{\sigma }}}, {{\varvec{\tau }}}) \! -\! (1\! -\! \beta D) (|\Pi ({{\varvec{\sigma }}})|\!+\!|\Pi ({{\varvec{\tau }}})|\!-\!2) \; . \end{aligned}$$

The leading order graphs are such that \(|\Pi ({{\varvec{\tau }}})|=1\), which implies \(\sum _c\#(\tau _c) - D|\Pi ({{\varvec{\tau }}})|=\sum _c\#(\tau _c) - D\ge 0\), which in turn vanishes if and only if \(\#(\tau _c)=1\). They also have \(\omega ({{\varvec{\tau }}})=0\), which imposes that all the \(\tau _c\) are the same cycle. The same goes for \({{\varvec{\sigma }}}\). For the genera \(g(\sigma _c, \tau _c)\) to vanish, \(\sigma _c\) and \(\tau _c\) must be the same cycle. \(\Box ({{\varvec{\sigma }}}, {{\varvec{\tau }}})\) indeed vanishes for such contributions. \(\square \)

1.5 Regime S-VII

Lemma C.5

For \(\epsilon > \beta = 1/D\), the leading order graphs are such that for all c, \(\tau _c = \sigma _c=\sigma \), not necessarily connected, and:

$$\begin{aligned} \lim _{N\rightarrow +\infty } \frac{1}{N^2} C_n\Bigl ( N^{D(1- \epsilon (D-1) }{\textrm{Tr}}(AUBU^* )\Bigr ) = \sum _{ \sigma \in S_n} \ \prod _{{\eta \text { cycle }}{\text {of} \sigma }} {\textrm{tr}}\bigl (A^{l(\eta )}\bigr ){\textrm{tr}}\bigl (B^{l(\eta )}\bigr ) f[{{\varvec{\sigma }}}, {{\varvec{\sigma }}}] , \end{aligned}$$

with \(l(\eta )\) the length of the cycle \(\eta \).

We can give a close expression for \(f[{{\varvec{\sigma }}}, {{\varvec{\sigma }}}]\) using (2.5):

$$\begin{aligned} f[{{\varvec{\sigma }}}, {{\varvec{\sigma }}}] = 2^{nD} \sum _{\begin{array}{c} {\pi _1,\ \ldots \,\ \pi _D}\\ {|\Pi (\sigma )\vee \pi _1\vee \ldots \vee \pi _D | = 1 }\\ {\sum _c |\Pi (\pi _c)|= 1 + nD - |\Pi (\sigma )|} \end{array}} \ \prod _{c=1}^D \prod _{B\in \pi _c} \frac{(3|B |- 3)!}{(2|B |)!} . \end{aligned}$$

Proof

For \(\epsilon > \beta = 1/D\), (5.1) becomes:

$$\begin{aligned}&2 + n\bigl [ {\gamma _{{}_{\beta \epsilon } }}-D + \epsilon D(D-1)\bigr ] -\sum _c 2g(\sigma _c, \tau _c) - \epsilon ( \omega ({{\varvec{\sigma }}}) + \omega ({{\varvec{\tau }}})) - 2\,\Box ({{\varvec{\sigma }}}, {{\varvec{\tau }}}) \\&\qquad -(\epsilon - \frac{1}{D})\bigg [\sum _c \bigl (\#(\sigma _c) + \#(\tau _c)\bigr ) - D\bigl (|\Pi ({{\varvec{\sigma }}})|+ |\Pi ({{\varvec{\tau }}})|\bigr )\bigg ] \; . \end{aligned}$$

At leading order, \({{\varvec{\sigma }}}\) and \({{\varvec{\tau }}}\) must be melonic, and since \(\sum _c \#(\sigma _c) =D|\Pi ({{\varvec{\sigma }}})|\) and \(\sum _c \#(\tau _c) = D |\Pi ({{\varvec{\tau }}})|\), from (4.5) it follows that \(\sigma _c =\sigma \) and \(\tau _c = \tau \) for all c. With these constraints, \(\Box ({{\varvec{\sigma }}}, {{\varvec{\tau }}})=0\) is equivalent to \(\#(\sigma )=\#(\tau ) = |\Pi (\sigma , \tau )|\) and since \(g(\sigma , \tau )=0\), \(\sigma =\tau \) (Proposition 4.4). \(\square \)

1.6 Regime S-VIII

Lemma C.6

In the regions \(\epsilon \ge 1/D\), \(\beta > 1/D\) and \(0\le \epsilon < 1/D\), \(\beta > 1- \epsilon (D-1)\), the leading order graphs are such that \(\sigma _c=\tau _c = {\textrm{id}}\) for all c:

$$\begin{aligned} \lim _{N\rightarrow +\infty } \frac{1}{N^2 } C_n\Biggl ( \frac{N^{D+2}}{N^{\epsilon D(D-1) + 2\beta D}} {\textrm{Tr}}(AUBU^* )\Biggr ) = \bigl ( {\textrm{tr}}({a}) \cdot {\textrm{tr}}({b})\bigr )^n. \end{aligned}$$

Proof

We divide the proof for this regime in two regions: \(\epsilon \ge 1/D\) and \(\beta > 1/D\) on one hand, and \(0\le \epsilon < 1/D \) and \(\beta > 1- \epsilon (D-1)\) on the other.

For \(\epsilon \ge 1/D \) and \(\beta > 1/D \), we rewrite (5.1) as:

$$\begin{aligned}&2 + n\bigl [ {\gamma _{{}_{\beta \epsilon } }}-D + \epsilon D(D-1) + 2\beta D- 2\bigr ] -2\sum _c g(\sigma _c, \tau _c) - \epsilon (\omega ({{\varvec{\sigma }}}) + \omega ({{\varvec{\tau }}})) - 2\, \Box ({{\varvec{\sigma }}}, {{\varvec{\tau }}}) \\ {}&- (\beta - \frac{1}{D} )\sum _c \bigl [n-\#(\sigma _c) +n- \#(\tau _c)\bigr ] \\&\quad -(\epsilon - \frac{1}{D})\bigg [\sum _c \bigl (\#(\sigma _c) + \#(\tau _c)\bigr ) - D\bigl (|\Pi ({{\varvec{\sigma }}})|+ |\Pi ({{\varvec{\tau }}})|\bigr )\bigg ] \; , \end{aligned}$$

which at leading order, due to the first term in the second line, restricts to \(\sigma _c=\tau _c={\textrm{id}}\) for all c. For \(0\le \epsilon < 1/D \) and \(\beta > 1- \epsilon (D-1)\), we reach the same conclusion by writing (5.1) as:

$$\begin{aligned}&2+ n\Bigl [ {\gamma _{{}_{\beta \epsilon } }}-D + \epsilon D(D-1) + 2(1-\epsilon D)(D- 1) + 2(\beta - \epsilon + \epsilon D - 1)D\Bigr ] \\&\qquad - \sum _c 2g(\sigma _c, \tau _c) - (\beta - \epsilon + \epsilon D - 1)\sum _c \bigl [n-\#(\sigma _c) +n- \#(\tau _c)\bigr ]\\&\qquad \qquad - \epsilon (\omega ({{\varvec{\sigma }}}) + \omega ({{\varvec{\tau }}})) - 2\,\epsilon D\, \Box ({{\varvec{\sigma }}}, {{\varvec{\tau }}}) - 2(1 - \epsilon D ){\Delta }({{\varvec{\sigma }}}, {{\varvec{\tau }}}) \; . \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, B., Gurau, R. & Lionni, L. The Tensor Harish-Chandra–Itzykson–Zuber Integral II: Detecting Entanglement in Large Quantum Systems. Commun. Math. Phys. 401, 669–716 (2023). https://doi.org/10.1007/s00220-023-04653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04653-5

Navigation