Skip to main content
Log in

Regularity of Minimizers for a Model of Charged Droplets

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate properties of minimizers of a variational model describing the shape of charged liquid droplets. The model, proposed by Muratov and Novaga, takes into account the regularizing effect due to the screening of free counterionions in the droplet. In particular we prove partial regularity of minimizers, a first step toward the understanding of further properties of minimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Actually in [20], the energy (1.4) is written as

    $$\begin{aligned} \sigma P(E)+Q^{2}\Bigg \{\frac{\beta _{0}}{2}\int _{\mathbb {R}^{n}}a_{E}|\nabla {u}|^{2}\,dx+K\int _{E}\rho ^{2}\,dx\Bigg \}, \end{aligned}$$

    for suitable parameters \(\sigma \) and \(\beta _{0}\) and the relation (1.6) is replaced by \(-\beta _{0}{{\,\textrm{div}\,}}\big (a_{E}\,\nabla {u}\big )=\rho \). However it is easy to see that the parameters \(\sigma \) and \(\beta _{0}\) can be absorbed in \(Q\) and \(K\), see also the discussion below.

  2. Note that this is possible only if \(\beta \) is large compared to \(1\), see the discussion at the end of this introduction and Remark 4.6.

  3. Here and in the sequel we will always work with the representative of \(E\) such that

    $$\begin{aligned} \partial E=\Biggl \{x: \frac{|B_r(x){\setminus } E|}{|B_r(x)|} \cdot \frac{|B_r(x)\cap E|}{|B_r(x)|}>0\quad \text {for all } r>0\Biggr \}, \end{aligned}$$

    see [19, Proposition 12.19].

  4. Here

    $$\begin{aligned}{}[\nabla f]_{\vartheta /2}:=\sup _{x\ne y } \frac{|\nabla f(x)-\nabla f(y)|}{|x-y|^\frac{\vartheta }{2}}. \end{aligned}$$

References

  1. Almgren, F.J.J.: Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Ann. Math. 87, 321–391 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almgren, F.J.J.: Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems with Constraints. Mem. Amer. Math. Soc., 4 (1976), pp. viii+199

  3. Ambrosio, L., Buttazzo, G.: An optimal design problem with perimeter penalization. Calc. Var. Partial Differ. Equ. 1, 55–69 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cordes, H.O.: Über die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen. Math. Ann. 131, 278–312 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Giorgi, E.: Frontiere Orientate di Misura Minima, Seminario di Matematica della Scuola Normale Superiore di Pisa. Editrice Tecnico Scientifica, Pisa (1960)

    Google Scholar 

  6. De Philippis, G., Figalli, A.: A note on the dimension of the singular set in free interface problems. Differ. Integral Equ. 28, 523–536 (2015)

    MathSciNet  MATH  Google Scholar 

  7. De Philippis, G., Maggi, F.: Regularity of free boundaries in anisotropic capillarity problems and the validity of Young’s law. Arch. Ration. Mech. Anal. 216, 473–568 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deserno, M.: Rayleigh instability of charged droplets in the presence of counterions. Eur. Phys. J. E 6, 163–168 (2001)

    Article  Google Scholar 

  9. Doyle, A., Moffett, D., Vonnegut, B.: Behavior of evaporating electrically charged droplets. J. Colloid Sci. 19, 136–143 (1964)

    Article  Google Scholar 

  10. Duft, D., Achtzehn, T., Müller, R., Huber, B.A., Leisner, T.: Rayleigh jets from levitated microdroplets. Nature 421, 128 (2003)

    Article  ADS  Google Scholar 

  11. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Textbooks in Mathematics. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  12. Fusco, N., Julin, V.: On the regularity of critical and minimal sets of a free interface problem. Interfaces Free Bound. 17, 117–142 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, vol. 80 of Monographs in Mathematics. Birkhäuser Verlag, Basel (1984)

    Book  Google Scholar 

  14. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co., Inc., River Edge, NJ (2003)

    Book  MATH  Google Scholar 

  15. Goldman, M., Novaga, M., Ruffini, B.: Existence and stability for a non-local isoperimetric model of charged liquid drops. Arch. Ration. Mech. Anal. 217, 1–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goldman, M., Novaga, M., Ruffini, B.: On minimizers of an isoperimetric problem with long-range interactions under a convexity constraint. Anal. PDE 11, 1113–1142 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goldman, M., Ruffini, B.: Equilibrium shapes of charged droplets and related problems: (mostly) a review. Geom. Flows 2, 94–104 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Lin, F.-H.: Variational problems with free interfaces. Calc. Var. Partial Differ. Equ. 1, 149–168 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems: an Introduction to Geometric Measure Theory, vol. 135 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, (2012)

  20. Muratov, C.B., Novaga, M.: On Well-Posedness of Variational Models of Charged Drops. Proc. A., 472 (2016)

  21. Muratov, C.B., Novaga, M., Ruffini, B.: On equilibrium shape of charged flat drops. Commun. Pure Appl. Math. 71, 1049–1073 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rayleigh, J.: On the equilibrium of liquid conducting masses charged with electricity. Lond Edinb Dublin Philos Mag J Sci 14, 184–186 (1882)

    Article  Google Scholar 

  23. Richardson, C.B., Pigg, A.L., Hightower, R.L.: On the stability limit of charged droplets. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 422, 319–328 (1989)

    ADS  Google Scholar 

  24. Stone, H.A., Lister, J.R., Brenner, M.P.: Drops with Conical Ends in Electric and Magnetic Fields (1998)

  25. Tamanini, I.: Boundaries of Caccioppoli sets with Hölder-continuous normal vector. J. Reine Angew. Math. 334, 27–39 (1982)

    MathSciNet  MATH  Google Scholar 

  26. Taylor, G.: Disintegration of water drops in electric field. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 280, 383–397 (1964)

    ADS  MATH  Google Scholar 

  27. Thaokar, R.M., Deshmukh, S.D.: Rayleigh instability of charged drops and vesicles in the presence of counterions. Phys. Fluids 22, 034107 (2010)

    Article  ADS  MATH  Google Scholar 

  28. Wilson, C.T.R., Taylor, G.I.: The bursting of soap-bubbles in a uniform electric field. Math. Proc. Camb. Philos. Soc. 22, 728–730 (1925)

    Article  ADS  Google Scholar 

  29. Zeleny, J.: Instability of electrified liquid surfaces. Phys. Rev. 10, 1–6 (1917)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of G. D. P. and of G. V. is supported by the INDAM-Grant “Geometric Variational Problems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido de Philippis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philippis, G.d., Hirsch, J. & Vescovo, G. Regularity of Minimizers for a Model of Charged Droplets. Commun. Math. Phys. 401, 33–78 (2023). https://doi.org/10.1007/s00220-022-04565-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04565-w

Navigation