Skip to main content
Log in

Logarithmic Variance for the Height Function of Square-Ice

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, we prove that the height function associated with the square-ice model (i.e. the six-vertex model with \(a=b=c=1\) on the square lattice), or, equivalently, of the uniform random homomorphisms from \(\mathbb {Z}^2\) to \(\mathbb {Z}\), has logarithmic variance. This establishes a strong form of roughness of this height function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Technically, such a distribution is only defined up to a translation — we will assume \(h_u = 0\) for some fixed u, and note that all terms in the theorem below do not depend on the choice of u.

  2. The continuous path is made by joining the vertices by straight lines in \({\mathbb {R}}^2\).

  3. We prefer the use of the square-root trick to the use of the union bound since we will refer to this argument later with events having a probability close to 1. We recall that the square-root trick yields that for increasing events \(\mathcal {A}_,\dots ,\mathcal {A}_s\) and a measure \({\mathbb {P}}\) satisfying the FKG inequality,

    $$\begin{aligned} \max _{i\le s}{\mathbb {P}}[\mathcal {A}_i]\ge 1-(1-{\mathbb {P}}[\mathcal {A}_1\cup \dots \cup \mathcal {A}_s])^{1/s}. \end{aligned}$$
  4. In (3.10), we needed to apply Proposition 3.1 twice and Proposition 3.2 once which gave a factor of \(\frac{1}{32}\) instead of \(\frac{1}{8}\).

References

  1. Benjamini, I., Häggström, O., Mossel, E.: On random graph homomorphisms into \({\mathbb{Z} }\). J. Comb. Theory Ser. B 78(1), 86–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benjamini, I., Peres, Y.: Tree-indexed random walks on groups and first passage percolation. Probab. Theory Relat. Fields 98(1), 91–112 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beffara, V., Duminil-Copin, H.: The self-dual point of the two-dimensional random-cluster model is critical for \(q\ge 1\). Probab. Theory Relat. Fields 153(3–4), 511–542 (2012)

    Article  MATH  Google Scholar 

  4. Benjamini, I., Schechtman, G.: Upper bounds on the height difference of the Gaussian random field and the range of random graph homomorphisms into \({\mathbb{Z}}\). Random Struct. Algorithms 17(1), 20–25 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benjamini, I., Yadin, A., Yehudayoff, A.: Random graph-homomorphisms and logarithmic degree. Electron. J. Probab. 12(32), 926–920 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Bollobás, B., Riordan, O.: A short proof of the Harris–Kesten theorem. Bull. Lond. Math. Soc. 38(3), 470–484 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bollobás, B., Riordan, O.: Percolation on self-dual polygon configurations. Irregul. Mind Bolyai Soc. Math. Stud. 7, 131–217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bufetov, A., Knizel, A.: Asymptotics of random domino tilings of rectangular Aztec diamonds. Ann. IHP 54(3), 150–1290 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Chandgotia, N., Peled, R., Sheffield, S., Tassy, M.: Delocalization of uniform graph homomorphisms from \({\mathbb{Z}}^{2}\) to \({\mathbb{Z}}\). arXiv:1810.10124 (2018)

  10. Duminil-Copin, H., Karrila, A., Manolescu, I., Oulamara, M.: Delocalization of the height function of the six-vertex model. arXiv:2012.13750 (2020)

  11. Duminil-Copin, H., Sidoravicius, V., Tassion, V.: Continuity of the phase transition for planar random-cluster and Potts models with \(1\le q\le 4\). Commun. Math. Phys. 349(1), 47–107 (2017)

    Article  ADS  MATH  Google Scholar 

  12. Duminil-Copin, H., Gagnebin, M., Harel, M., Manolescu, I., Tassion, V.: Discontinuity of the phase transition for the planar random-cluster and Potts models with \(q>4\). arXiv:1611.09877 (2016)

  13. Duminil-Copin, H., Gagnebin, M., Harel, M., Manolescu, I., Tassion, V.: The Bethe ansatz for the six-vertex and XXZ models: an exposition. Probab. Surv. 15, 102–130 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duminil-Copin, H., Glazman, A., Peled, R., Spinka, Y.: Macroscopic loops in the loop \(O(n)\) model at Nienhuis’ critical point. arXiv:1707.09335 (2017)

  15. Duminil-Copin, H., Hongler, C., Nolin, P.: Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Commun. Pure Appl. Math. 64(9), 1165–1198 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duminil-Copin, H., Tassion, V.: Renormalization of crossing probabilities in the planar random-cluster model. arXiv:1901.08294 (2019)

  17. Erschler, A.: Random mappings of scaled graphs. Probab. Theory Relat. Fields 144(3–4), 543–579 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Galvin, D.: On homomorphisms from the Hamming cube to. Israel J. Math. 138(1), 189–213 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Georgii, H.O., Häggstrom, O., Maes, C.: The Random Geometry of Equilibrium Phases. Phase Transitions and Critical Phenomena, vol. 18, pp. 1–142. Academic Press, New York (2001)

  20. Glazman, A., Manolescu, I.: Uniform Lipschitz functions on the triangular lattice have logarithmic variations. arXiv:1810.05592 (2018)

  21. Glazman, A., Peled, R.: On the transition between the disordered and antiferroelectric phases of the 6-vertex model, arXiv:1909.03436 (2019)

  22. Kahn, J.: Range of cube-indexed random walk. Israel J. Math. 124, 189–201 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lieb, E.H.: Exact solution of the two-dimensional slater KDP model of a ferroelectric. Phys. Rev. 19(3), 108–110 (1967)

    ADS  Google Scholar 

  24. Lieb, E.H.: Residual entropy of square ice. Phys. Rev. 162(1), 162 (1967)

    Article  ADS  Google Scholar 

  25. Lieb, E.H.: Exact solution of the F model of an antiferroelectric. In: Condensed Matter Physics and Exactly Soluble Models, pp. 453–455 (1967)

  26. Loebl, M., Nešetřil, J., Reed, B.: A note on random homomorphism from arbitrary graphs to \({\mathbb{Z}}\). Discrete Math. 273(1–3), 173–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peled, R.: High-dimensional Lipschitz functions are typically flat. Ann. Probab. 45(3), 1351–1447 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ray, G., Spinka, Y.: A short proof of the discontinuity of phase transition in the planar random-cluster model with \(q>4\). arXiv:1904.10557 (2019)

  29. Ray, G., Spinka, Y.: Proper 3-colorings of \({\bf Z}^2\) are Bernoulli. Erg. Theory. Dyn. Syst. (to appear) (2022)

  30. Russo, L.: A note on percolation. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 43(1), 39–48 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Seymour, P.D., Welsh, D.J.A.: Percolation probabilities on the square lattice. Ann. Discrete Math. 3, 227–245 (1978)

  32. Sheffield, S.: Random surfaces. Astérisque, Société mathématique de France (2005)

  33. Tassion, V.: Crossing probabilities for Voronoi percolation. Ann. Probab. 44(5), 3385–3398 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is supported by the ERC CriBLaM, the NCCR SwissMAP, the Swiss NSF and an IDEX Chair from Paris-Saclay. The second author was supported in part by the European Research Council starting Grant 678520 (LocalOrder), and the Zuckerman STEM leadership Postdoctoral Fellowship. The last author is supported in part by NSERC 50311-57400. This project was initiated during the visit of the last author in IHES. The authors would like to express their gratitude to IHES for its support. Finally, we thank Alex Karrila and the anonymous referee for carefully reading the manuscript. After the preparation of this article, question 1.5 has been solved in [10] exploiting a key input coming from Bethe Ansatz calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gourab Ray.

Additional information

Communicated by J. Ding.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duminil-Copin, H., Harel, M., Laslier, B. et al. Logarithmic Variance for the Height Function of Square-Ice. Commun. Math. Phys. 396, 867–902 (2022). https://doi.org/10.1007/s00220-022-04483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04483-x

Navigation