Skip to main content
Log in

On Global Dynamics of Schrödinger Map Flows on Hyperbolic Planes Near Harmonic Maps

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The results of this paper are twofold. In the first part, we prove that for Schrödinger map flows from hyperbolic planes to Riemannian surfaces with non-positive sectional curvatures, the harmonic maps which are holomorphic or anti-holomorphic of arbitrary size are asymptotically stable. In the second part, we prove that for Schrödinger map flows from hyperbolic planes into Kähler manifolds, the admissible harmonic maps of small size are asymptotically stable. The asymptotic stability results stated here contain two types: one is the convergence in \(L^{\infty }_x\) as the previous works, the other is convergence to harmonic maps plus radiation terms in the energy space, which is new in literature of Schrödinger map flows without symmetric assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anker, J.P., Pierfelice, V.: Nonlinear Schrödinger equation on real hyperbolic spaces. Ann. Henri Poincaré Analyse Non-Lineéaire 26(5), 1853–1869 (2009)

    Article  MATH  ADS  Google Scholar 

  2. Anker, J.P., Pierfelice, V., Vallarino, M.: The wave equation on hyperbolic spaces. J. Differ. Equ. 252, 5613–5661 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Bejenaru, I.: On Global Schrödinger maps. Am. J. Math. 215(1), 263–291 (2007)

    MATH  Google Scholar 

  4. Bejenaru, I., Ionescu, A.D., Kenig, C.E.: Global existence and uniqueness of Schrödinger maps in dimensions \(d\ge 4\). Adv. Math. 215(1), 263–291 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bejenaru, I., Ionescu, A.D., Kenig, C.E., Tataru, D.: Global Schrödinger maps in dimensions \(d\ge 2\): small data in the critical Sobolev spaces. Ann. Math. 173(3), 1443–1506 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bejenaru, I., Ionescu, A.D., Kenig, C.E., Tataru, D.: Equivariant Schrödinger maps in two spatial dimensions. Duke Math. J. 162(11), 1967–2025 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bejenaru, I., Ionescu, A.D., Kenig, C.E., Tataru, D.: Equivariant Schrödinger Maps in two spatial dimensions: the \(\mathbb{H}^2\) target. Kyoto J. Math. 56, 283–323 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bejenaru, I., Tataru, D.: Near soliton evolution for equivariant Schrödinger Maps in two spatial dimensions. Mem. Am. Math. Soc. 228(1069) (2010)

  9. Chang, N.H., Shatah, J., Uhlenbeck, K.: Schrödinger maps. Commun. Pure Appl. Math. 53(5), 590–602 (2000)

    Article  MATH  Google Scholar 

  10. Cowling, M., Giulini, S., Meda, S.: \(L^p\)-\(L^ q\) estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. I. Duke Math. J. 72(1), 109–150 (1993)

    MATH  Google Scholar 

  11. Davies, E.B., Mandouvalos, N.: Heat kernel bounds on hyperbolic space and Kleinian groups. Proc. Lond. Math. Soc. 3(1), 182–208 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Da Rios, L.: On the motion of an unbounded fluid with a vortex filament of any shape. Rend. Circ. Mat. Palermo 22, 117–135 (1906)

    Google Scholar 

  13. Ding, W.Y., Wang, Y.D.: Local Schrödinger flow into Kähler manifolds. Sci. China Math., Ser. A 44, 1446–1464 (2001)

    Article  MATH  ADS  Google Scholar 

  14. Gavrus, C., Jao, C., Tataru, D.: Wave maps on \((1+2)\)-dimensional curved spacetimes. Arxiv preprint, (2018)

  15. Gustafson, S., Kang, K., Tsai, T.P.: Asymptotic stability of harmonic maps under the Schrödinger flow. Duke Math. J. 145(3), 537–583 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gustafson, S., Nakanishi, K., Tsai, T.P.: Asymptotic stability, concentration, and oscillation in harmonic map heat-flow, Landau–Lifshitz, and Schröinger maps on \(R^2\). Commun. Math. Phys. 300(1), 205–242 (2010)

    Article  MATH  Google Scholar 

  17. Hebey, E.: Sobolev Spaces on Riemannian Manifolds. Lecture Notes in Mathematics, vol. 1635. Springer-Verlag, Berlin (1996)

    MATH  Google Scholar 

  18. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic press, Cambridge (1979)

    MATH  Google Scholar 

  19. Ionescu, A.D., Kenig, C.E.: Well-posedness and local smoothing of solutions of Schrödinger equations. Math. Res. Lett. 12, 193–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ionescu, A.D., Kenig, C.E.: Low-regularity Schrodinger maps. II. Global well-posedness in dimensions \(d\ge 3\). Commun. Math. Phys. 271, 523–559 (2007)

    Article  MATH  Google Scholar 

  21. Ionescu, A.D., Staffilani, G.: Semilinear Schrödinger flows on hyperbolic spaces: scattering in \(H^1\). Math. Ann. 345(1), 133–158 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaizuka, K.: Resolvent estimates on symmetric spaces of noncompact type. J. Math. Soc. Jpn. 66(3), 895–926 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Koornwinder, T.H.: Jacobi functions and analysis on noncompact semisimple Lie groups. In: Askey, R.A., et al. (Eds.) Special Functions (Group Theoretical Aspects, Applications), Reidel (1984)

  24. Landau, L., Lifshitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sovietunion 8, 153–169 (1935)

    MATH  Google Scholar 

  25. Lawrie, A.: The Cauchy problem for wave maps on a curved background. Calc. Var. Partial. Differ. Equ. 45(3–4), 505–548 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lawrie, A., Luhrmann, J., Oh, S.J., Shahshahani, S.: Local smoothing estimates for Schrödinger equations on hyperbolic space. ArXiv e-prints (2018)

  27. Lawrie, A., Luhrmann, J., Oh, S.J., Shahshahani, S.: Asymptotic stability of harmonic maps on the hyperbolic plane under the Schrödinger map evolution. Commun. Pure Appl. Math. (2021) online published. https://doi.org/10.1002/cpa.22012

  28. Lawrie, A., Oh, S.J., Shahshahani, S.: Profile decompositions for wave equations on hyperbolic space with applications. Math. Ann. 365(1–2), 707–803 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lawrie, A., Oh, S.J., Shahshahani, S.: Gap eigenvalues and asymptotic dynamics of geometric wave equations on hyperbolic space. J. Funct. Anal. 271(11), 3111–3161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lawrie, A., Oh, S.J., Shahshahani, S.: Equivariant wave maps on the hyperbolic plane with large energy. Math. Res. Lett. 24(2), 449–479 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lawrie, A., Oh, S.J., Shahshahani, S.: The Cauchy problem for wave maps on hyperbolic space in dimensions \(d\ge 4\). Int. Math. Res. Not. IMRN 2018(7), 1954–2051 (2018)

    Article  MATH  Google Scholar 

  32. Lawrie, A., Oh, S.J., Shahshahani, S.: Stability of stationary equivariant wave maps from the hyperbolic plane. Am. J. Math. 139(4), 1085–1147 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, Z.: Asymptotic stability of large energy harmonic maps under the wave map from 2D hyperbolic spaces to 2D hyperbolic spaces. Adv. Math., vol. 370 (2020)

  34. Li, Z.: Global Schrödinger map flows to Kähler manifolds with small data in critical Sobolev spaces: Energy critical case. ArXiv e-prints (2018), to appear in JEMS

  35. Li, Z.: Global Schrödinger map flows to Kähler manifolds with small data in critical Sobolev spaces: High dimensions. J. Funct. Anal., 281 (2021)

  36. Li, Z.: Endpoint Strichartz estimates for magnetic wave equations on two dimensional hyperbolic spaces. Differ. Integral Equ. 32(7–8), 369–408 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Li, Z., Ma, X., Zhao, L.: Asymptotic stability of harmonic maps between 2D hyperbolic spaces under the wave map equation. II. Small energy case. Dyn. Partial Differ. Equ. 15(4), 283–336 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, Z., Zhao, L.: Convergence to harmonic maps for the Landau–Lifshitz flows between two dimensional hyperbolic spaces. Disc. Cont. Dyn. Sys. 39(1), 607–638 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. McGahagan, H.: An approximation scheme for Schrödinger maps. Commun. Partial Differ. Equ. 32(3), 375–400 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Merle, F., Raphael, P., Rodnianski, I.: Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem. Invent. Math. 193(2), 249–365 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Nahmod, A., Shatah, J., Vega, L., Zeng, C.: Schrödinger maps and their associated frame systems. Int. Math. Res. Notices 2007(21). article ID rnm088 (2007)

  42. Oh, S.J.: Finite energy global well-posedness of the Yang-Mills equations on \(R^{1+3}\): an approach using the Yang-Mills heat flow. Duke Math. J. 164(9), 1669–1732 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Oh, S.J., Tataru, D.: The threshold theorem for the \((4+1)\)-dimensional Yang–Mills equation: an overview of the proof. Bull. Am. Math. Soc. 56(2), 171–210 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Oh, S.J., Tataru, D.: The hyperbolic Yang–Mills equation in the caloric gauge. Local well-posedness and control of energy dispersed solutions. Pure Appl. Anal. 2(2), 233–384 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Oh, S.J., Tataru, D.: The hyperbolic Yang–Mills equation for connections in an arbitrary topological class. Commun. Math. Phys. 1, 1–55 (2017)

    Google Scholar 

  46. Perelman, G.: Blow up dynamics for equivariant critical Schrödinger maps. Commun. Math. Phys. 330(1), 69–105 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 4. Academic Press, Cambridge (1978)

    MATH  Google Scholar 

  48. Rodnianski, I., Rubinstein, Y., Staffilani, G.: On the global well-posedness of the one-dimensional Schrödinger map flow. Anal. PDE 2(2), 187–209 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Shahshahani, S.: Stability of stationary wave maps from a curved background to a sphere. Discrete Contin. Dyn. Syst. Ser. A 36(7), 3857–3909 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Shatah, J., Struwe, M.: Geometric Wave Equations. American Mathematical Soc (1998)

  51. Shatah, J., Tahvildar-Zadeh, A.: On the stability of stationary wave maps. Commun. Math. Phys. 185, 231–256 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. Siu, Y.T.: Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems. J. Differ. Geom. 17(1982), 55–138 (1982)

    MathSciNet  MATH  Google Scholar 

  53. Siu, Y.T., Yau, S.T.: Compact Kähler manifolds of positive bisectional curvature. Invent. Math. 59, 189–204 (1980)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  54. Smith, P.: Geometric renormalization below the ground state. Int. Math. Res. Not. IMRN 16, 3800–3844 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. Smith, P.: Conditional global regularity of Schrödinger maps: subthreshold dispersed energy. Anal. PDE 6(3), 601–686 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sulem, P.L., Sulem, C., Bardos, C.: On the continuous limit for a system of classical spins. Commun. Math. Phys. 107(3), 431–454 (1986)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  57. Tao, T.: Geometric renormalization of large energy wave maps. Journees equations aux derivees partielles, 1–32 (2004)

  58. Tao, T.: Global regularity of wave maps III. Large energy from \(R^{1+2}\) to hyperbolic spaces. arXiv preprint (2008)

  59. Tao, T.: Global regularity of wave maps VI. Abstract theory of minimal-energy blowup solutions. arXiv preprint (2009)

  60. Tao, T.: Global regularity of wave maps VII. Control of delocalised or dispersed solutions. arXiv preprint, (2009)

  61. Terng, C., Uhlenbeck, K.: Schrödinger flows on Grassmannians. In: Integrable Systems, Geometry, and Topology, AMS/IP Stud. Adv. Math., vol. 36, pp. 235–256. Amer. Math. Soc., Providence, RI (2006). See also arxiv 1999

Download references

Acknowledgements

The author owes sincere gratitude to the referees for the insightful comments which intensely improved the presentation of this work. This work was partially supported by NSF-China Grant-1200010237 and the Natural Science Foundation of Zhejiang Province under Grant No. LY22A010005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze Li.

Additional information

Communicated by A. Ionescu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z. On Global Dynamics of Schrödinger Map Flows on Hyperbolic Planes Near Harmonic Maps. Commun. Math. Phys. 393, 279–345 (2022). https://doi.org/10.1007/s00220-022-04368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04368-z

Navigation