Skip to main content
Log in

Non-uniqueness of Steady-State Weak Solutions to the Surface Quasi-Geostrophic Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show the existence of nontrivial stationary weak solutions to the surface quasi-geostrophic equations on the two dimensional periodic torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This approach originates from an exposition in [17], which dates back to Resnick’s thesis [14].

  2. Our work was first completed in the summer of 2018 when all three authors were at UBC and we thank the mathematics department for its hospitality.

  3. Here and below we still denote by f its periodic extension to all of \({\mathbb {R}}^2\).

  4. Here \({\mathcal {F}}^{-1}\) denotes the inverse Fourier transform on \({\mathbb {R}}^2\times {\mathbb {R}}^2\). See (3.6).

  5. Here t belongs to an arbitrary compact interval.

References

  1. Buckmaster, T., Shkoller, S., Vicol, V.: Nonuniqueness of weak solutions to the SQG equation. Commun. Pure Appl. Math. 72(9), 1809–1874 (2019)

    Article  MathSciNet  Google Scholar 

  2. Choffrut, A., Székelyhidi, L.: Weak solutions to the stationary incompressible Euler equations. SIAM J. Math. Anal. 46(6), 4060–4074 (2014)

    Article  MathSciNet  Google Scholar 

  3. Colombo, M., De Rosa, L., Sorella, M.: Typicality results for weak solutions of the incompressible Navier–Stokes equations. arXiv:2102.03244

  4. Córdoba, A., Córdoba, D., Gancedo, F.: Uniqueness for SQG patch solutions. Trans. Am. Math. Soc. Ser. B 5, 1–31 (2018)

    Article  MathSciNet  Google Scholar 

  5. De Lellis, C., Székelyhidi, L., Jr.: The \(h\)-principle and the equations of fluid dynamics. Bull. Am. Math. Soc. 49(3), 347–375 (2012)

    Article  MathSciNet  Google Scholar 

  6. De Lellis, C., Székelyhidi, L., Jr.: Dissipative continuous Euler flows. Invent. Math. 193(2), 377–407 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. De Lellis, C., Székelyhidi, L., Jr.: On turbulence and geometry: from Nash to Onsager. Notices AMS 66(5), 677–685 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Held, I.M., Pierrehumbert, R.T., Garner, S.T., Swanson, K.L.: Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1–20 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  9. Isett, P., Ma, A.: A direct approach to nonuniqueness and failure of compactness for the SQG equation. Nonlinearity 34(5), 3122–3162 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  10. Isett, P., Vicol, V.: Hölder continuous solutions of active scalar equations. Ann. PDE. 1(1), 1–77 (2015)

    Article  MathSciNet  Google Scholar 

  11. Luo, X.: Stationary solutions and nonuniqueness of weak solutions for the Navier–Stokes equations in high dimensions. Arch. Ration. Mech. Anal. 233, 701–747 (2019)

    Article  MathSciNet  Google Scholar 

  12. Marchand, F.: Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces \(L^p\) or \({\dot{H}}^{-\frac{1}{2}}\). Commun. Math. Phys. 277(1), 45–67 (2008)

    Article  ADS  Google Scholar 

  13. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1982)

    Book  Google Scholar 

  14. Resnick, S.G.: Dynamical Problems in Non-linear Adjective Partial Differential Equations. Ph.D. Thesis, University of Chicago (1995)

  15. Shvydkoy, R.: Convex integration for a class of active scalar equations. J. Am. Math. Soc. 24(4), 1159–1174 (2011)

    Article  MathSciNet  Google Scholar 

  16. Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. In: Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton, NJ (1993)

  17. Tao, T.: Conserved quantities for the surface quasi-geostrophic equation (2014). https://terrytao.wordpress.com/2014/03/06/conserved-quantities-for-the-surface-quasigeostrophic-equation/

Download references

Acknowledgements

H. Kwon was partially supported by NSERC Grant 261356-13 (Canada) and the NSF Grant No. DMS-1638352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Li.

Additional information

Communicated by K. Nakanishi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Bookkeeping of Various Parameters

Appendix A: Bookkeeping of Various Parameters

In this appendix we sketch how the choice of various parameters in (1.4) take effect on various error terms and the regularity of the weak solution. Recall that (observe from below \(\log \mu _{n+1} \sim \log \lambda _n\))

$$\begin{aligned} \lambda _n=\left\lceil \lambda _0^{b^n} \right\rceil ,\quad r_n=\lambda _n^{-\beta }, \quad \mu _{n+1}=(\lambda _n \lambda _{n+1})^{\frac{1}{2}}, \quad {\alpha = \frac{1}{2} + \frac{\beta }{2b} -(b-1)^3>\frac{1}{2}}. \end{aligned}$$

Mismatch error       \( r_n \frac{\lambda _n}{\lambda _{n+1} } \log \lambda _n \ll r_{n+1}\iff \lambda _n^{(b-1)(\beta -1)}\log \lambda _n\ll 1. \)

Transport error     \(\lambda _n^{1-\alpha }\sqrt{\frac{r_n}{\lambda _{n+1}}}\ll r_{n+1}\iff \lambda _n^{1-\alpha -\frac{1}{2} \beta -\frac{1}{2} b+b\beta }\ll 1.\)

Dissipation error \(\lambda _{n+1}^{\gamma -1}\sqrt{\frac{r_n}{\lambda _{n+1}}}\ll r_{n+1}\iff \lambda _{n+1}^{\gamma -\frac{3}{2}+\beta -\frac{\beta }{2b} }\ll 1.\)

\(C^\alpha \)-regularity       \(\lambda _{n+1}^\alpha \sqrt{\frac{r_n}{\lambda _{n+1}}}\ll 1 \iff \lambda _{n+1}^{\alpha -\frac{1}{2}-\frac{1}{2b} \beta }\ll 1.\)

Now one can take \(\alpha \approx \frac{1}{2} +\frac{\beta }{2b} \) to do a limiting computation. From the transport error we obtain (the limiting condition)

$$\begin{aligned} 1-\alpha -\frac{1}{2} \beta -\frac{1}{2} b +b \beta =\frac{1-b}{2b} (b-\beta (2b+1)) \Rightarrow \beta <\frac{1}{3}. \end{aligned}$$

From the dissipation error we obtain \(\frac{\beta }{2} <\frac{3}{2} -\gamma \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Kwon, H. & Li, D. Non-uniqueness of Steady-State Weak Solutions to the Surface Quasi-Geostrophic Equations. Commun. Math. Phys. 388, 1281–1295 (2021). https://doi.org/10.1007/s00220-021-04247-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04247-z

Navigation