Skip to main content
Log in

The Speed of a Random Front for Stochastic Reaction–Diffusion Equations with Strong Noise

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the asymptotic speed of a random front for solutions \(u_t(x)\) to stochastic reaction–diffusion equations of the form

$$\begin{aligned} \partial _tu=\frac{1}{2}\partial _x^2u+f(u)+\sigma \sqrt{u(1-u)}{\dot{W}}(t,x),~t\ge 0,~x\in {\mathbb {R}}, \end{aligned}$$

arising in population genetics. Here, f is a continuous function with \(f(0)=f(1)=0\), and such that \(|f(u)|\le K|u(1-u)|^\gamma \) with \(\gamma \ge 1/2\), and \({\dot{W}}(t,x)\) is a space-time Gaussian white noise. We assume that the initial condition \(u_0(x)\) satisfies \(0\le u_0(x)\le 1\) for all \(x\in {\mathbb {R}}\), \(u_0(x)=1\) for \(x<L_0\) and \( u_0(x)=0\) for \(x>R_0\). We show that when \(\sigma >0\), for each \(t>0\) there exist \(R(u_t)<+\infty \) and \(L(u_t)<-\infty \) such that \(u_t(x)=0\) for \(x>R(u_t)\) and \(u_t(x)=1\) for \(x<L(u_t)\) even if f is not Lipschitz. We also show that for all \(\sigma >0\) there exists a finite deterministic speed \(V(\sigma )\in {\mathbb {R}}\) so that \(R(u_t)/t\rightarrow V(\sigma )\) as \(t\rightarrow +\infty \), almost surely. This is in dramatic contrast with the deterministic case \(\sigma =0\) for nonlinearities of the type \(f(u)=u^m(1-u)\) with \(0<m<1\) when solutions converge to 1 uniformly on \({\mathbb {R}}\) as \(t\rightarrow +\infty \). Finally, we prove that when \(\gamma >1/2\) there exists \(c_f\in {\mathbb {R}}\), so that \(\sigma ^2V(\sigma )\rightarrow c_f\) as \(\sigma \rightarrow +\infty \) and give a characterization of \(c_f\). The last result complements a lower bound obtained by Conlon and Doering (J Stat Phys 120(3–4):421–477, 2005) for the special case of \(f(u)=u(1-u)\) where a duality argument is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguirre, J., Escobedo, M.: A Cauchy problem for \(u_t - \Delta u =u^p\) with 0 \(< \mathit{p} < 1\). Asymptotic behaviour of solutions. Ann. Fac. Sci. Toulouse Math. (5) 8(2):175–203 (1986/87)

  2. Aronson, D., Weinberger, H.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978)

    Article  MathSciNet  Google Scholar 

  3. Bramson, M.D.: Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31, 531–581 (1978)

    Article  MathSciNet  Google Scholar 

  4. Bramson, M.D.: Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Am. Math. Soc. 44(285), iv+190 (1983). https://doi.org/10.1090/memo/0285

  5. Brunet, É., Derrida, B.: Shift in the velocity of a front due to a cutoff. Phys. Rev. E (3) 56(3 part A), 2597–2604 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  6. Brunet, É., Derrida, B.: Probability distribution of the free energy of a directed polymer in a random medium. Phys. Rev. E (3) 61(6 part B), 6789–6801 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  7. Conlon, J.G., Doering, C.R.: On travelling waves for the stochastic Fisher–Kolmogorov–Petrovsky–Piscunov equation. J. Stat. Phys. 120(3–4), 421–477 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. Dawson, D.A.: Geostochastic calculus. Can. J. Stat. 6, 143–168 (1978)

    Article  MathSciNet  Google Scholar 

  9. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)

    Article  Google Scholar 

  10. Mueller, C., Mytnik, L., Quastel, J.: Effect of noise on front propagation in reaction–diffusion equations of KPP type. Invent. Math. 184(2), 405–453 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  11. Mueller, C., Sowers, R.: Random traveling waves for the KPP equation with noise. J. Funct. Anal. 128, 439–498 (1995)

    Article  MathSciNet  Google Scholar 

  12. Mueller, C., Tribe, R.: Finite width for a random stationary interface. Electron. J. Prob. 2, 1–27 (1997)

    Article  MathSciNet  Google Scholar 

  13. Mueller, C.: On the support of solutions to the heat equation with noise. Stochastics 37(4), 225–246 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Nolen, J., Roquejoffre, J.-M., Ryzhik, L.: Refined long time asymptotics for Fisher-KPP fronts, Preprint (2018)

  15. Perkins, E.: Dawson–Watanabe Superprocesses and Measure-Valued Diffusions. Lectures on probability theory and statistics (Saint-Flour, 1999). Lecture Notes in Mathematics. Springer, Berlin (2002)

    MATH  Google Scholar 

  16. Roberts, M.: A simple path to asymptotics for the frontier of a branching Brownian motion. Ann. Prob. 41, 3518–3541 (2013)

    Article  MathSciNet  Google Scholar 

  17. Shiga, T.: Stepping stone models in population genetics and population dynamics. Stochastic processes in physics and engineering (Bielefeld, 1986), 345–355, Math. Appl., 42, Reidel, Dordrecht (1988)

  18. Shiga, T.: Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Can. J. Math 46(2), 415–437 (1994)

    Article  MathSciNet  Google Scholar 

  19. Tribe, R.: Large time behavior of interface solutions to the heat equation with Fisher–Wright noise. Probab. Theory Relat. Fields 102, 289–311 (1995)

    Article  MathSciNet  Google Scholar 

  20. Walsh, J.B.: An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour, XIV-1984 (Berlin, Heidelberg, New York). In: Hennequin, P.L. (ed.) Lecture Notes in Mathematics, vol. 1180, pp. 265–439. Springer, Berlin (1986)

    Google Scholar 

Download references

Acknowledgements

The work of LM and LR was supported by a US-Israel BSF grant. LR was supported by NSF Grant DMS-1613603 and ONR Grant N00014-17-1-2145, and CM was supported by a Simons Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenya Ryzhik.

Additional information

Communicated by M. Hairer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mueller, C., Mytnik, L. & Ryzhik, L. The Speed of a Random Front for Stochastic Reaction–Diffusion Equations with Strong Noise. Commun. Math. Phys. 384, 699–732 (2021). https://doi.org/10.1007/s00220-021-04084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04084-0

Navigation