Skip to main content
Log in

On the Size of Chaos via Glauber Calculus in the Classical Mean-Field Dynamics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a system of classical particles, interacting via a smooth, long-range potential, in the mean-field regime, and we optimally analyze the propagation of chaos in form of sharp estimates on many-particle correlation functions. While approaches based on the BBGKY hierarchy are doomed by uncontrolled losses of derivatives, we propose a novel non-hierarchical approach that focusses on the empirical measure of the system and exploits discrete stochastic calculus with respect to initial data in form of higher-order Poincaré inequalities for cumulants. This main result allows to rigorously truncate the BBGKY hierarchy to an arbitrary precision on the mean-field timescale, thus justifying the Bogolyubov corrections to mean field. As corollaries, we also deduce a quantitative central limit theorem for fluctuations of the empirical measure, and we discuss the Lenard–Balescu limit for a spatially homogeneous system away from thermal equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. More precisely, for \(H:{\mathbb {D}}^m\rightarrow {\mathbb {R}}\), we write \({{\text {Sym}}}(H)(z_1,\ldots ,z_m)=\frac{1}{m!}\sum _{\sigma \in {\mathcal {S}}_m}H(z_{\sigma (1)},\ldots ,z_{\sigma (m)})\), where \({\mathcal {S}}_m\) denotes the set of all permutations of the set [m].

  2. More explicitly, \({\mathcal {G}}^\circ \) is the centered Gaussian field characterized by its variance structure \({\text {Var}}\!\left[ {\int _{\mathbb {D}}\phi \, {\mathcal {G}}^\circ }\right] =\int _{\mathbb {D}}\phi ^2F^\circ -(\int _{\mathbb {D}}\phi F^\circ )^2\) for all \(\phi \in C^\infty _c({\mathbb {D}})\).

References

  1. Balescu, R.: Irreversible processes in ionized gases. Phys. Fluids 3(1), 52–63 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  2. Balescu, R., Taylor, H.S.: Binary correlations in ionized gases. Phys. Fluids 4(1), 85–93 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bobylev, A.V., Pulvirenti, M., Saffirio, C.: From particle systems to the Landau equation: a consistency result. Commun. Math. Phys. 319(3), 683–702 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bodineau, T., Gallagher, I., Saint-Raymond, L.: From hard sphere dynamics to the Stokes–Fourier equations: an \(L^2\) analysis of the Boltzmann–Grad limit. Ann. PDE 3(1), 118 (2017). Art. 2

    Article  Google Scholar 

  5. Bogolyubov, N.N.: Problems of a Dynamical Theory in Statistical Physics, Volume I of Studies in Statistical Mechanics. North-Holland, Amsterdam (1962). Translation of the 1946 Russian version

    Google Scholar 

  6. Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the \(1/N\) limit of interacting classical particles. Commun. Math. Phys. 56, 101–113 (1977)

    Article  MathSciNet  Google Scholar 

  7. Chatterjee, S.: A new method of normal approximation. Ann. Probab. 36(4), 1584–1610 (2008)

    Article  MathSciNet  Google Scholar 

  8. Decreusefond, L., Halconruy, H.: Malliavin and Dirichlet structures for independent random variables. Stoch. Process. Appl. 129(8), 2611–2653 (2019)

    Article  MathSciNet  Google Scholar 

  9. Dobrušin, R .L.: Vlasov equations. Funktsional. Anal. i Prilozhen 13(2), 48–58 (1979). 96

    MathSciNet  Google Scholar 

  10. Duerinckx, M., Gloria, A., Otto, F.: The structure of fluctuations in stochastic homogenization. Commun. Math. Phys. 377(1), 259–306 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  11. Duerinckx, M., Saint-Raymond, L.: Lenard–Balescu correction to mean-field theory. Prob. Math. Phys., (2020)

  12. Efron, B., Stein, C.: The jackknife estimate of variance. Ann. Stat. 9(3), 586–596 (1981)

    Article  MathSciNet  Google Scholar 

  13. Golse, F.: On the Dynamics of Large Particle Systems in the Mean Field Limit. In Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, Volume 3 of Lecture Notes in Applied Mathematics and Mechanics, pp. 1–144. Springer, Berlin (2016)

    Google Scholar 

  14. Guernsey, R.L.: The kinetic theory of fully ionized gases. PhD thesis, University of Michigan, (1960)

  15. Guernsey, R.L.: Kinetic equation for a completely ionized gas. Phys. Fluids 5, 322–328 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  16. Helffer, B., Sjöstrand, J.: On the correlation for Kac-like models in the convex case. J. Stat. Phys. 74(1–2), 349–409 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  17. Kac, M.: Foundations of kinetic theory. In: Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. University of California Press, Berkeley and Los Angeles, (1956)

  18. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition

    Book  Google Scholar 

  19. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907 (1988)

    Article  MathSciNet  Google Scholar 

  20. Klimontovich, Y.L.: The Statistical Theory of Non-Equilibrium Processes in a Plasma, Volume 9 of International Series of Monographs in Natural Philosophy in Statistical Mechanics. Pergamon Press, Oxford (1967). Translation of the 1964 Russian version

    Google Scholar 

  21. Lachièze-Rey, R., Peccati, G.: New Berry–Esseen bounds for functionals of binomial point processes. Ann. Appl. Probab. 27(4), 1992–2031 (2017)

    Article  MathSciNet  Google Scholar 

  22. Lancellotti, C.: On the fluctuations about the Vlasov limit for \(N\)-particle systems with mean-field interactions. J. Stat. Phys. 136, 643–665 (2009)

    Article  MathSciNet  Google Scholar 

  23. Lancellotti, C.: From Vlasov fluctuations to the BGL kinetic equation. Nuovo Cim. 33, 111–119 (2010)

    Google Scholar 

  24. Lenard, A.: On Bogoliubov’s kinetic equation for a spatially homogeneous plasma. Ann. Phys. 10, 390–400 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  25. Nicholson, D.R.: Introduction to Plasma Theory. Wiley, New Jersey (1983)

    Google Scholar 

  26. Nourdin, I., Peccati, G.: Cumulants on the Wiener space. J. Funct. Anal. 11, 3775–3791 (2010)

    Article  MathSciNet  Google Scholar 

  27. Paul, T., Pulvireneti, M., Simonella, S.: On the size of chaos in the mean field dynamics. Arch. Ration. Mech. Anal. 231(1), 285–317 (2019)

    Article  MathSciNet  Google Scholar 

  28. Privault, N.: Calcul des variations stochastique pour la mesure de densité uniforme. Potential Anal. 7(2), 577–601 (1997)

    Article  MathSciNet  Google Scholar 

  29. Privault, N., Serafin, G.: Stein approximation for functionals of independent random sequences. Electron. J. Probab. 23(4), 34 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Reed, M., Simon, B.: Tensor products of closed operators on Banach spaces. J. Funct. Anal. 13, 107–124 (1973)

    Article  MathSciNet  Google Scholar 

  31. Sjöstrand, J.: Correlation asymptotics and Witten Laplacians. Algebra i Analiz 8(1), 160–191 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, New York (1991)

    Book  Google Scholar 

  33. Stein, C.: Approximate computation of expectations. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 7. Institute of Mathematical Statistics, Hayward, CA, (1986)

  34. Velázquez, J.J.L., Winter, R.: The two-particle correlation function for systems with long-range interactions. J. Stat. Phys. 173(1), 1–41 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  35. Winter, R.: Convergence to the Landau equation from the truncated BBGKY hierarchy in the weak-coupling limit. Preprint, arXiv:1905.05021

Download references

Acknowledgements

The author wishes to warmly thank François Golse, Laure Saint-Raymond, and Sergio Simonella for motivating discussions. His work is supported by the CNRS-Momentum program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitia Duerinckx.

Additional information

Communicated by C. Mouhot

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duerinckx, M. On the Size of Chaos via Glauber Calculus in the Classical Mean-Field Dynamics. Commun. Math. Phys. 382, 613–653 (2021). https://doi.org/10.1007/s00220-021-03978-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-03978-3

Navigation