Skip to main content
Log in

Heat Kernel for Liouville Brownian Motion and Liouville Graph Distance

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show the existence of the scaling exponent \(\chi = \chi (\gamma )\), with

$$\begin{aligned} 0 < \chi \le \frac{4}{\gamma ^2} \left( \left( 1+ {\gamma ^2} / 4 \right) - \sqrt{1+ {\gamma ^4} / {16} } \right) , \end{aligned}$$

of the graph distance associated with subcritical two-dimensional Liouville quantum gravity of paramater \(\gamma <2\) on \({\mathbb {V}} =[0,1]^2 \). We also show that the Liouville heat kernel satisfies, for each fixed \(u,v\in {\mathbb {V}}^o\), the short time estimate

$$\begin{aligned} \lim _{t\rightarrow 0} \frac{\log |\log {\textsf {p} }_t^\gamma (u,v)| }{|\log t|}=\frac{\chi }{2-\chi }, \ \mathrm{a.s..} \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Thus, in our terminology, the LQG is the Gaussian Multiplicative Chaos (GMC) built from the Gaussian free field. As pointed out to us by Remi Rhodes, in the physics literature the LQG is often meant to represent a modification of this measure, e.g. by normalizition with respect to the total mass of the GMC. In this paper we follow the terminology established in [20], and only note that global, absolutely continuous modifications such as a normalization by the area would not change the value of the exponents in Theorem 1.1 below.

  2. i.e. \(\int E_x \left( \int _0^t f (X_s) d F(s) \right) g (x) d x = \int _0^t \Big ( \int \left( \int p_s (x,y) f (y) M_\gamma (dy) \right) g(x) d x \Big ) d s\) for all continuous nonnegative compactly supported functions fg.

  3. So that \(D_{\gamma ,\delta }(u,v)\) is a measurable random variable.

References

  1. Adler, R.J.: An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes. Lecture Notes—Monograph Series. Institute of Mathematical Statistics, Hayward (1990)

    MATH  Google Scholar 

  2. Andres, S., Kajino, N.: Continuity and estimates of the Liouville heat kernel with applications to spectral dimensions. Probab. Theory Relat. Fields 166, 713–752 (2016)

    Article  MathSciNet  Google Scholar 

  3. Berestycki, N.: Diffusion in planar Liouville quantum gravity. Ann. Inst. Henri Poincaré Probab. Stat. 51(3), 947–964 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Berestycki, N.: An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab. 22: Paper No. 27, 12 (2017)

  5. Berestycki, N.: Introduction to the Gaussian free field and Liouville quantum gravity (2017). http://www.statslab.cam.ac.uk/~beresty/Articles/oxford4.pdf. Accessed 10 May 2019

  6. Berestycki, N., Garban, C., Rhodes, R., Vargas, V.: KPZ formula derived from Liouville heat kernel. J. Lond. Math. Soc. (2) 94(1), 186–208 (2016)

    Article  MathSciNet  Google Scholar 

  7. Biskup, M., Ding, J., Goswami, S.: Random walk in two-dimensional exponentiated Gaussian free field: recurrence and return probability (2016). Preprint. arXiv:1611.03901

  8. Borell, C.: The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30(2), 207–216 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  9. Cortines, A., Gold, J., Louidor, O.: Dynamical freezing in a spin glass system with logarithmic correlations. Electron. J. Probab. 23: Paper No. 59, 1–31 (2018)

  10. David, F., Bauer, M.: Another derivation of the geometrical KPZ relations. J. Stat. Mech. Theory Exp. 3, P03004 (2009)

    MathSciNet  Google Scholar 

  11. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, Volume 38 of Stochastic Modelling and Applied Probability. Springer, Berlin (2010). (Corrected reprint of the second (1998) edition)

    Book  Google Scholar 

  12. Ding, J., Dunlap, A.: Liouville first passage percolation: subsequential scaling limits at high temperatures. Ann. Probab. 47(2), 690–742 (2019)

    Article  MathSciNet  Google Scholar 

  13. Ding, J., Dunlap, A.: Subsequential scaling limits for Liouville graph distance (2018). Preprint. arXiv:1812.06921

  14. Ding, J., Goswami, S.: Upper bounds on Liouville first passage percolation and Watabiki’s prediction. Commun. Pure Appl. Math. (accepted by)

  15. Ding, J., Gwynne, E.: The fractal dimension of Liouville quantum gravity: universality, monotonicity and bounds (2018). Preprint. arXiv:1807.01072

  16. Ding, J., Zeitouni, O., Zhang, F.: On the Liouville heat kernel for \(k\)-coarse MBRW and nonuniversality. Electron. J. Probab. 23: Paper No. 62, 1–20 (2018)

  17. Ding, J., Zhang, F.: Non-universality for first passage percolation on the exponential of log-correlated Gaussian fields. Probab. Theory Relat. Fields 171, 1157–1188 (2018)

    Article  MathSciNet  Google Scholar 

  18. Ding, J., Zhang, F.: Liouville first passage percolation: geodesic dimension is strictly larger than 1 at high temperatures. Probab. Theory Relat. Fields 174(1–2), 335–367 (2019)

    Article  Google Scholar 

  19. Dubédat, J., Falconet, H.: Liouville metric of star-scale invariant fields: tails and Weyl scaling (2018). Preprint. arXiv:1809.02607

  20. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  21. Fernique, X.: Regularité des trajectoires des fonctions aléatoires gaussiennes. In: École d’Été de Probabilités de Saint-Flour, IV-1974. Lecture Notes in Mathematics, vol. 480, pp. 1–96. Springer, Berlin (1975)

    Chapter  Google Scholar 

  22. Garban, C., Rhodes, R., Vargas, V.: On the heat kernel and the Dirichlet form of Liouville Brownian motion. Electron. J. Probab. 19: Paper No. 96, 25 (2014)

  23. Garban, C., Rhodes, R., Vargas, V.: Liouville Brownian motion. Ann. Probab. 44(4), 3076–3110 (2016)

    Article  MathSciNet  Google Scholar 

  24. Gwynne, E., Holden, N., Sun, X.: A distance exponent for Liouville quantum gravity. Probab. Theory Relat. Fields 173(3–4), 931–997 (2019)

    Article  MathSciNet  Google Scholar 

  25. Hammersley, J.M.: Generalization of the fundamental theorem on sub-additive functions. Proc. Camb. Philos. Soc. 58, 235–238 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  26. Junnila, J., Saksman, E., Webb, C.: Decomposition of log-correlated fields with applications (2018). Preprint. arXiv:1808.06838

  27. Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105–150 (1985)

    MathSciNet  MATH  Google Scholar 

  28. Ledoux, M.: The Concentration of Measure Phenomenon. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  29. Maillard, P., Rhodes, R., Vargas, V., Zeitouni, O.: Liouville heat kernel: regularity and bounds. Ann. Inst. Henri Poincaré Probab. Stat. 52(3), 1281–1320 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map I: the QLE(8/3,0) metric (2015). Preprint. arXiv:1507.00719

  31. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map II: the QLE(8/3,0) metric (2016). Preprint. arXiv:1605.03563

  32. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map III: the conformal structure is determined (2016). Preprint. arXiv:1608.05391

  33. Miller, J., Sheffield, S.: Quantum Loewner evolution. Duke Math. J. 165(17), 3241–3378 (2016)

    Article  MathSciNet  Google Scholar 

  34. Rhodes, R., Vargas, V.: KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15, 358–371 (2011)

    Article  MathSciNet  Google Scholar 

  35. Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11, 315–392 (2014)

    Article  MathSciNet  Google Scholar 

  36. Rhodes, R., Vargas, V.: Spectral dimension of Liouville quantum gravity. Ann. Henri Poincaré 15(12), 2281–2298 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  37. Rhodes, R., Vargas, V.: Lecture notes on Gaussian multiplicative chaos and Liouville quantum gravity (2016). Preprint. arXiv:1602.07323

  38. Robert, R., Vargas, V.: Gaussian multiplicative chaos revisited. Ann. Probab. 38(2), 605–631 (2010)

    Article  MathSciNet  Google Scholar 

  39. Shamov, A.: On Gaussian multiplicative chaos. J. Funct. Anal. 270(9), 3224–3261 (2016)

    Article  MathSciNet  Google Scholar 

  40. Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139(3–4), 521–541 (2007)

    Article  MathSciNet  Google Scholar 

  41. Sudakov, V.N., Cirel’son, B.S.: Extremal properties of half-spaces for spherically invariant measures. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41, 14–24, 165 (1974) (Problems in the theory of probability distributions, II)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuxi Zhang.

Additional information

Communicated by H. Duminil-Copin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jian Ding: Partially supported by an NSF grant DMS-1757479, an Alfred Sloan fellowship, and NSF of China 11628101.

Ofer Zeitouni: Partially supported by the ERC advanced grant LogCorrelatedFields and by the Herman P. Taubman professorial chair at the Weizmann Institute.

Fuxi Zhang: Partially supported by NSF of China 11771027.

Appendix

Appendix

In this appendix, we record, for use in subsequent work, a few lemmas that can be readily deduced from the techniques employed in this paper; these lemmas are not used in the paper. Let \(\lambda = \frac{1}{20}\) as in Lemma 5.4. Denote \( \bar{{\mathbb {V}}}_u = {{\mathbb {V}}}_{u, \lambda }\) and \( \bar{{\mathbb {V}}}_{u, \alpha } = {{\mathbb {V}}}_{u, \alpha \lambda }\) for \(\alpha \in (0,1)\).

Lemma 6.1

Fix \(\alpha \in (0, 1)\). Let \(\chi \) be as in Lemma 5.3. Then, for any \(u\in \bar{{\mathbb {V}}}\),

$$\begin{aligned}&\lim _{\delta \rightarrow 0} \frac{{{\mathbb {E}}}\log \left( \min _{x\in \partial \bar{{\mathbb {V}}}_{u, \alpha }, \ y\in \partial \bar{{\mathbb {V}}}_u}D_{\gamma , \delta }(x, y) \right) }{\log \delta ^{-1}}\nonumber \\&\quad = \lim _{\delta \rightarrow 0} \frac{{{\mathbb {E}}}\log \left( \min _{x\in \partial \bar{{\mathbb {V}}}_{u, \alpha }, \ y\in \partial \bar{{\mathbb {V}}}_u} D_{\gamma , \delta , \eta }(x, y) \right) }{\log \delta ^{-1}} = \chi . \end{aligned}$$
(137)

Proof

The first equality holds due to Lemma 3.10 and the main task is to prove the second equality. By Lemma 5.4 and a similar derivation to (124), we get that for any \(\kappa >0\), \(v\in {\mathbb {V}}\)

$$\begin{aligned} {{\mathbb {E}}}\log \left( \min _{ y\in \partial {{\mathbb {V}}}_{v, \kappa }} D_{\gamma , \delta , \eta }(v, y) \right) = \big ( \chi +o(1) \big ) \log \delta ^{-1}. \end{aligned}$$
(138)

Thus it suffices to prove a lower bound in (137). The proof is similar to that of Lemma 5.4.

By Proposition 3.17, it suffices to show that for any fixed \(\iota >0\) and any segment \( L_\delta \subseteq \partial \bar{{\mathbb {V}}}_{u, \alpha }\) with length in \([\delta ^{2\iota }/2, \delta ^{2\iota }]\) we have

$$\begin{aligned} {{\mathbb {E}}}\log \left( \min _{x\in L_\delta , y\in \partial \bar{{\mathbb {V}}}_u} D_{\gamma , \delta , \eta }(x, y) \right) \ge (\chi - 2\iota ) \log \delta ^{-1}. \end{aligned}$$

Suppose the preceding statement fails for some \( L_\delta \). Let \(v_{ L_\delta }\) be an arbitrary point on \( L_\delta \). As shown in Fig. 3 employed in the proof of Lemma 5.4, we can construct four short crossings through four rectangles (with dimension \(10| L_\delta | \times 40 | L_\delta |\)) which altogether form a contour enclosing \( L_\delta \). Consequently, the union of these short crossings, the geodesic between \( L_\delta \) and \(\partial \bar{{\mathbb {V}}}_u\), as well as the geodesic between \(v_{ L_\delta }\) and \(\partial \bar{{\mathbb {V}}}_u\) contains a path between \(v_{ L_\delta }\) and \(\partial \bar{{\mathbb {V}}}_u\). Therefore, by the same argument as in Lemma 5.4, we get that

$$\begin{aligned} {{\mathbb {E}}}\log \left( \min _{y\in \partial \bar{{\mathbb {V}}}_u}D_{\gamma , \delta , \eta }(v_{ L_\delta }, y) \right) \le (\chi - \iota ) \log \delta ^{-1}. \end{aligned}$$

This contradicts with (138). Thus, we complete the proof of the lemma by contradiction.

\(\square \)

Fix \(\xi >0\) through out the appendix. For any Euclidean ball B, we denote by 2B a Euclidean ball concentric with B, whose radius is double that of B. For \(\delta >0\) and any two distinct points \(u, v\in {{\mathbb {V}}}^\xi \), we define a variation of Liouville graph distance \(D^{({\textsf {2} })}_{\gamma , \delta , \xi }(u, v)\) to be the minimal d such that there exist Euclidean balls \(B_1, \ldots , B_d \subseteq {\mathbb {V}}^\xi \) with rational centers and \(M_\gamma (2B_i)\le \delta ^2\) for \(1\le i\le d\), whose union contains a path from u to v.

For an Euclidean ball B with radius r centered at z, we define its circle-average-approximate-LQG measure by \(M^\circ _{\gamma }(B) = r^{2+\gamma ^2/2} e^{\gamma h_r(z)}\), compare with (27). For \(\delta >0\) and any two distinct points \(u, v\in {{\mathbb {V}}}^\xi \), we define another variation of Liouville graph distance \(D^{\circ }_{\gamma , \delta , \xi }(u, v)\) to be the minimal d such that there exist Euclidean balls \(B_1, \ldots , B_d \subseteq {\mathbb {V}}^\xi \) with rational centers and \(M^\circ _\gamma (B_i)\le \delta ^2\) for \(1\le i\le d\), whose union contains a path from u to v.

We define \(D'_{\gamma , \delta , \xi }(x, y)\) to be a version of the approximate Liouville graph distance where we restrict to cells in \({\mathbb {V}}^\xi \). One can verify that our proofs for Lemmas 3.53.83.10 and Corollary 3.9 as well as Proposition 3.17 extend automatically to \(D'_{\gamma , \delta , \xi }\). Recall \(C_{\mathrm {Mc}}\) as specified in Lemma 3.1.

Proposition 6.2

For every fixed \(0<\xi < C_{\mathrm {Mc}}/3\) there exists a constant \(c=c(\gamma , \xi )\) so that for every fixed \(\iota >0\) and every sequence of \(\xi \)-admissible pairs \((A_\delta , B_\delta )\),

$$\begin{aligned} \min _{x\in A_\delta , \ y \in B_\delta }D_{\gamma , \delta }(x, y) \cdot \delta ^{\iota } \le \min _{x\in A_\delta , \ y\in B_\delta }D^{({\textsf {2} })}_{\gamma , \delta , \xi }(x, y) \le \min _{x\in A_\delta , \ y\in B_\delta } D_{\gamma , \delta }(x, y) \cdot \delta ^{-\iota }, \end{aligned}$$

with \((c\cdot \iota ^2)\)-high probability. The preceding statement remains true if we replace \(D^{({\textsf {2} })}_{\gamma , \delta , \xi }\) by \(D^{\circ }_{\gamma , \delta , \xi }\).

Proof

By Lemma 6.1 and Proposition 3.17, we have that with \((c\cdot \iota ^2)\)-high probability

$$\begin{aligned} \min _{x\in A_\delta , \ y\in B_\delta }D'_{\gamma , \delta }(x, y) \cdot \delta ^{\iota } \le \min _{x\in A_\delta , \ y \in B_\delta }D'_{\gamma , \delta , \xi }(x, y) \le \min _{x\in A_\delta , \ y \in B_\delta } D'_{\gamma , \delta }(x, y) \cdot \delta ^{-\iota }. \end{aligned}$$

Combined with Proposition 3.2, it implies that Proposition 6.2 follows provided that with \((c\cdot \iota ^2)\)-high probability

$$\begin{aligned} \begin{aligned}&\min _{x\in A_\delta , \ y\in B_\delta }D'_{\gamma , \delta , \xi }(x, y) \cdot \delta ^{\iota } \le \min _{x\in A_\delta , \ y\in B_\delta }D^{({\textsf {2} })}_{\gamma , \delta , \xi }(x, y) \le \min _{x\in A_\delta , \ y\in B_\delta } D'_{\gamma , \delta , \xi }(x, y) \cdot \delta ^{-\iota },\\&\min _{x\in A_\delta , \ y\in B_\delta }D'_{\gamma , \delta , \xi }(x, y) \cdot \delta ^{\iota } \le \min _{x\in A_\delta , \ y \in B_\delta }D^{\circ }_{\gamma , \delta , \xi }(x, y) \le \min _{x\in A_\delta , \ y \in B_\delta } D'_{\gamma , \delta , \xi }(x, y) \cdot \delta ^{-\iota }. \end{aligned}\nonumber \\ \end{aligned}$$
(139)

The proof of (139) is similar to that of Proposition 3.2. Thus, we only briefly discuss how to adapt the proof of Proposition 3.2.

For \(D^{({\textsf {2} })}_{\gamma , \delta , \xi }\), since \(D^{({\textsf {2} })}_{\gamma , \delta , \xi } \ge D_{\gamma , \delta , \xi }\), it remains to bound \(D^{({\textsf {2} })}_{\gamma , \delta , \xi }\) by \(D'_{\gamma , \delta , \xi }\) from above. We repeat the proof of Proposition 3.2, but with the following change: we will now define a new version of \(\Phi _{B, \delta }\) (similar to that in Definition 3.6) to be the minimal number of Euclidean balls \({\textsf {B} }\) with \(M_\gamma (2{\textsf {B} }) \le \delta ^2\) that covers \(\partial B\). (The only difference is that we used \(M_{\gamma }(2{\textsf {B} })\) in the preceding definition as opposed to \(M_{\gamma }({\textsf {B} })\) as in Definition 3.6.) One can then just repeat the arguments with this version of \(\Phi _{B, \delta }\) to conclude the proof on the upper bound—the only place that needs to be changed is in the proof of (50) and (51), where the required change is noting but enlarging a few constants which have been absorbed by much larger terms in the earlier proof.

Next, we consider \(D^{\circ }_{\gamma , \delta , \xi }\). By [14, Proposition 3.2] (which states that the circle average process and our \({\hat{h}}\)-process are close to each other) and Lemma 2.8, we get that with high probability

$$\begin{aligned} \max _{j: 2^{-j} \ge \delta ^{C_{\mathrm {mc}}+10}} \ \max _{x\in {\mathbb {V}}^\xi } \left| \eta _{2^{-j}}(x) - h_{2^{-j}}(x) \right| = O \left( \sqrt{\log \delta ^{-1}} \right) . \end{aligned}$$

This, together with Lemma 3.4, implies that with high probability

$$\begin{aligned} \min _{x\in A_\delta , \ y\in B_\delta }D'_{\gamma , \delta e^{(\log \delta ^{-1})^{0.6}}, \xi }(x, y)\le & {} \min _{x\in A_\delta , \ y\in B_\delta }D^{\circ }_{\gamma , \delta , \xi }(x, y) \\\le & {} \min _{x\in A_\delta , \ y\in B_\delta } D'_{\gamma , \delta e^{-(\log \delta ^{-1})^{0.6}}, \xi }(x, y). \end{aligned}$$

Combining Lemma 3.5, we complete the proof of (139), and thus the proof of the proposition. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Zeitouni, O. & Zhang, F. Heat Kernel for Liouville Brownian Motion and Liouville Graph Distance. Commun. Math. Phys. 371, 561–618 (2019). https://doi.org/10.1007/s00220-019-03467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03467-8

Navigation