Skip to main content
Log in

Rapidly Rotating Stars

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A rotating star may be modeled as a continuous system of particles attracted to each other by gravity and with a given total mass and prescribed angular velocity. Mathematically this leads to the Euler–Poisson system. We prove an existence theorem for such stars that are rapidly rotating, depending continuously on the speed of rotation. This solves a problem that has been open since Lichtenstein’s work (Math Z 36(1):481–562, 1933). The key tool is global continuation theory, combined with a delicate limiting process. The solutions form a connected set \({\mathcal{K}}\) in an appropriate function space. As the speed of rotation increases, we prove that the supports of the stars in \({\mathcal{K}}\) become unbounded if we assume for instance an equation of state of the form \({p=\rho^\gamma,\ 4/3 < \gamma < 2}\). On the other hand, if \({6/5 < \gamma < 4/3}\), we prove that either the supports of the stars in \({\mathcal{K}}\) become unbounded or the density somewhere within the stars becomes unbounded. We consider two formulations, one where the angular velocity is prescribed and the other where the angular momentum per unit mass is prescribed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexander J., Yorke J.A.: The implicit function theorem and the global methods of cohomology. J. Funct. Anal. 21(3), 330–339 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auchmuty G.: The global branching of rotating stars. Arch. Ration. Mech. Anal. 114(2), 179–193 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auchmuty J., Beals R.: Variational solutions of some nonlinear free boundary problems. Arch. Ration. Mech. Anal. 43(4), 255–271 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli L.A., Friedman A.: The shape of axisymmetric rotating fluid. J. Funct. Anal. 35(1), 109–142 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chanillo S., Li Y.Y.: On diameters of uniformly rotating stars. Commun. Math. Phys. 166(2), 417–430 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Friedman A., Turkington B.: Existence and dimensions of a rotating white dwarf. J. Differ. Equ. 42(3), 414–437 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Gidas B., Ni W.-M., Nirenberg L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Heilig, U.: On Lichtenstein’s analysis of rotating Newtonian stars. In: Annales de l’IHP Physique Théorique, vol. 60, pp. 457–487 (1994)

  9. Jang J., Makino T.: On slowly rotating axisymmetric solutions of the Euler–Poisson equations. Arch. Ration. Mech. Anal. 225(2), 873–900 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jardetzky W.S.: Theories of Figures of Celestial Bodies. Courier Corporation, North Chelmsford (2013)

    MATH  Google Scholar 

  11. Kielhöfer H.: Bifurcation Theory: An Introduction with Applications to PDEs, vol. 156. Springer, Berlin (2006)

    Google Scholar 

  12. Li Y.: On uniformly rotating stars. Arch. Ration. Mech. Anal. 115(4), 367–393 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lichtenstein L.: Untersuchungen über die Gleichgewichtsfiguren rotierender Flüssigkeiten, deren Teilchen einander nach dem Newtonschen Gesetze anziehen. Mathe. Z. 36(1), 481–562 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo T., Smoller J.: Existence and non-linear stability of rotating star solutions of the compressible Euler–Poisson equations. Arch. Ration. Mech. Anal. 191(3), 447–496 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Makino T.: On the existence of positive solutions at infinity for ordinary differential equations of emden type. Funkc. Ekvacioj 27(3), 319–329 (1984)

    MathSciNet  MATH  Google Scholar 

  16. McCann R.J.: Stable rotating binary stars and fluid in a tube. Houst. J. Math. 32(2), 603–631 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Nirenberg L.: Topics in Nonlinear Functional Analysis, vol. 6. American Mathematical Soc., Providence (1974)

    MATH  Google Scholar 

  18. Rabinowitz P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7(3), 487–513 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  19. Strauss W.A., Wu Y.: Steady states of rotating stars and galaxies. SIAM J. Math. Anal. 49(6), 4865–4914 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu Y.: On rotating star solutions to the non-isentropic Euler–Poisson equations. J. Differ. Equ. 259(12), 7161–7198 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Wu Y.: Existence of rotating planet solutions to the Euler–Poisson equations with an inner hard core. Arch. Ration. Mech. Anal. 219(1), 1–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

YW is supported by NSF Grant DMS-1714343. WS and YW also acknowledge the support of the spring 2017 semester program at ICERM (Brown U.), where much of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilun Wu.

Additional information

Communicated by C. De Lellis

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strauss, W.A., Wu, Y. Rapidly Rotating Stars. Commun. Math. Phys. 368, 701–721 (2019). https://doi.org/10.1007/s00220-019-03414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03414-7

Navigation