Skip to main content
Log in

A Continuous Family of Equilibria in Ferromagnetic Media are Ground States

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that a foliation of equilibria (a continuous family of equilibria whose graph covers all the configuration space) in ferromagnetic transitive models are ground states. The result we prove is very general, and it applies to models with long range and many-body interactions. As an application, we consider several models of networks of interacting particles including models of Frenkel–Kontorova type on \({\mathbb{Z}^d}\) and one-dimensional quasi-periodic media. The result above is an analogue of several results in the calculus of variations (fields of extremals) and in PDE’s. Since the models we consider are discrete and long range, new proofs need to be given. We also note that the main hypothesis of our result (the existence of foliations of equilibria) is the conclusion (using KAM theory) of several recent papers. Hence, we obtain that the KAM solutions recently established are minimizers when the interaction is ferromagnetic and transitive (these concepts are defined later).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, S.N., Gloria, A., Kuusi, T.: Bounded correctors in almost periodic homogeneization. Arch. Ration. Mech. Anal. 222(1), 393–426 (2016). doi:10.1007/s00205-016-1004-0

  2. Aubry S., Le Daeron P.Y.: The discrete Frenkel–Kontorova model and its extensions. I. Exact results for the ground-states. Phys. D 8(3), 381–422 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Armstrong S.N., Smart C.K.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. (4) 49(2), 423–481 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aubry, S.: Trajectories of the twist map with minimal action and connection with incommensurate structures. Phys. Rep. 103(1-4):127–141, 1984. Common trends in particle and condensed matter physics (Les Houches, 1983)

  5. Blass T., de la Llavede R.: The analyticity breakdown for Frenkel–Kontorova models in quasi-periodic media: numerical explorations. J. Stat. Phys. 150(6), 1183–1200 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Braun O.M., Kivshar Y.S.: The Frenkel–Kontorova Model. Texts and Monographs in Physics. Springer, Berlin (2004)

    Google Scholar 

  7. Blank M.L.: Metric properties of minimal solutions of discrete periodical variational problems. Nonlinearity 2(1), 1–22 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Blank M.L.: Chaos and order in the multidimensional Frenkel–Kontorova model. Teor. Mat. Fiz. 85(3), 349–367 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bondy J.A., Murty U.S.R.: Graph Theory, volume 244 of Graduate Texts in Mathematics. Springer, New York (2008)

    Google Scholar 

  10. Bollobás B.: Modern Graph Theory, volume 184 of Graduate Texts in Mathematics. Springer, New York (1998)

    Google Scholar 

  11. Carathéodory, C.: Calculus of Variations and Partial Differential Equations of the First Order. Translated from the German by Robert B. Dean, Julius J. Brandstatter, translating editor. AMS Chelsea Publishing (1999)

  12. Calleja R., Celletti A.: Breakdown of invariant attractors for the dissipative standard map. Chaos 20(1), 013121, 9 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Calleja R.C., Celletti A., de la Llave R.: A KAM theory for conformally symplectic systems: efficient algorithms and their validation. J. Differ. Equ. 255(5), 978–1049 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Candel A., de la Llave R.: On the Aubry–Mather theory in statistical mechanics. Commun. Math. Phys. 192(3), 649–669 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Caffarelli L.A., de la Llave R.: Planelike minimizers in periodic media. Commun. Pure Appl. Math. 54(12), 1403–1441 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Calleja R., Figueras J.-L.: Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map. Chaos 22(3), 033114, 10 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Celletti A., MacKay R.: Regions of nonexistence of invariant tori for spin-orbit models. Chaos 17(4), 043119, 12 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dávila G.: Plane-like minimizers for an area-Dirichlet integral. Arch. Ration. Mech. Anal. 207(3), 753–774 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. de la Llave R.: KAM theory for equilibrium states in 1-D statistical mechanics models. Ann. Henri Poincaré 9(5), 835–880 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. de la Llave R., Su X., Zhang L.: Resonant equilibrium configurations in quasi-periodic media: perturbative expansions. J. Stat. Phys. 162(6), 1522–1538 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. de la Llave R., Su X., Zhang L.: Resonant equilibrium configurations in quasi-periodic media: KAM theory. SIAM J. Math. Anal. 49(1), 597–625 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. de la Llave R., Valdinoci E.: Critical points inside the gaps of ground state laminations for some models in statistical mechanics. J. Stat. Phys. 129(1), 81–119 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. de la Llave R., Valdinoci E.: Ground states and critical points for generalized Frenkel–Kontorova models in \({\mathbb{Z}^d}\). Nonlinearity 20(10), 2409–2424 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. de la Llave R., Valdinoci E.: A generalization of Aubry–Mather theory to partial differential equations and pseudo-differential equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(4), 1309–1344 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. de la Llave R., Valdinoci E.: Ground states and critical points for Aubry–Mather theory in statistical mechanics. J. Nonlinear Sci. 20(2), 153–218 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Frenkel J., Kontorova T.: On the theory of plastic deformation and twinning. Acad. Sci. URSS J. Physics 1, 137–149 (1939)

    MathSciNet  MATH  Google Scholar 

  27. Koch H., de la Llave R., Radin C.: Aubry–Mather theory for functions on lattices. Discrete Contin. Dyn. Syst. 3(1), 135–151 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Kosygina E., Varadhan S.R.S.: Homogenization of Hamilton–Jacobi–Bellman equations with respect to time–space shifts in a stationary ergodic medium. Commun. Pure Appl. Math. 61(6), 816–847 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lions P.-L., Souganidis P.E.: Correctors for the homogenization of Hamilton–Jacobi equations in the stationary ergodic setting. Commun. Pure Appl. Math. 56(10), 1501–1524 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. MacKay R.S.: A criterion for nonexistence of invariant tori for Hamiltonian systems. Phys. D 36(1-2), 64–82 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mañé R.: Lagrangian flows: the dynamics of globally minimizing orbits. Bol. Soc. Bras. Mat. (N.S.) 28(2), 141–153 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mather J.N.: Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology 21(4), 457–467 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mather J.N.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207(2), 169–207 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Morse H.M.: A fundamental class of geodesics on any closed surface of genus greater than one. Trans. Am. Math. Soc. 26(1), 25–60 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  35. Moser J.: Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 3(3), 229–272 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Moser, J.: Minimal foliations on a torus. In: Topics in calculus of variations (Montecatini Terme, 1987), volume 1365 of Lecture Notes in Mathematice, pp. 62–99. Springer, Berlin, 1989

  37. Moser J., Struwe M.: On a Liouville-type theorem for linear and nonlinear elliptic differential equations on a torus. Bol. Soc. Bras. Mat. (N.S.) 23(1-2), 1–20 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Maró, S., Sorrentino A.: Aubry–Mather theory for conformally symplectic systems (2016). arXiv:1607.02943

  39. Newman, R.P.A.C., Percival I.C.: Definite paths and upper bounds on regular regions of velocity phase space. Phys. D 6(2), 249–259 (1982/83)

  40. Presutti, E.: Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Theoretical and Mathematical Physics. Springer, Berlin (2009)

  41. Rabinowitz, P.H., Stredulinsky, E.W.: Extensions of Moser–Bangert Theory. Progress in Nonlinear Differential Equations and Their Applications, 81. Birkhäuser/Springer, New York. Locally Minimal Solutions (2011)

  42. Ruelle, D.: Statistical Mechanics: Rigorous Results. W. A. Benjamin, Inc., New York (1969)

  43. Su X., de la Llave R.: KAM theory for quasi-periodic equilibria in 1D quasi-periodic media: II. Long-range interactions. J. Phys. A 45(45), 455203, 24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Su X., de la Llave R.: KAM theory for quasi-periodic equilibria in one-dimensional quasi-periodic media. SIAM J. Math. Anal. 44(6), 3901–3927 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Selke W.: Spatially modulated structures in systems with competing interactions. In: Phase Transitions and Critical Phenomena, volume 15, pp. 1–72. Academic Press (1992)

  46. Suhl, H.: Magnetism. A Treatise on Modern Theory and Materials. Vol. II. Statistical Models, Magnetic Symmetry, Hyperfine Interactions, and Metals. Part A. G.T. Rado, G.T., Suhl, H. (eds.) Academic Press, New York (1965)

  47. Torres M.: Plane-like minimal surfaces in periodic media with exclusions. SIAM J. Math. Anal. 36(2), 523–551 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Valdinoci E.: Plane-like minimizers in periodic media: jet flows and Ginzburg–Landau-type functionals. J. Reine Angew. Math. 574, 147–185 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xifeng Su.

Additional information

Communicated by C. Liverani

Xifeng Su supported by National Natural Science Foundation of China (Grant No. 11301513) and “the Fundamental Research Funds for the Central Universities”. Rafael de la Llave has been partially supported by NSF Grant DMS-1500943. He also acknowledges the support of the Tang Aoqing visiting professorship in Jilin University and the hospitality of Beijing Normal University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., de la Llave, R. A Continuous Family of Equilibria in Ferromagnetic Media are Ground States. Commun. Math. Phys. 354, 459–475 (2017). https://doi.org/10.1007/s00220-017-2913-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2913-y

Navigation