Skip to main content
Log in

The First Fundamental Theorem of Invariant Theory for the Orthosymplectic Supergroup

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give an elementary and explicit proof of the first fundamental theorem of invariant theory for the orthosymplectic supergroup by generalising the geometric method of Atiyah, Bott and Patodi to the supergroup context. We use methods from super-algebraic geometry to convert invariants of the orthosymplectic supergroup into invariants of the corresponding general linear supergroup on a different space. In this way, super Schur–Weyl–Brauer duality is established between the orthosymplectic supergroup of superdimension (m|2n) and the Brauer algebra with parameter m − 2n. The result may be interpreted either in terms of the group scheme OSp(V) over \({{\mathbb C}}\), where V is a finite dimensional super space, or as a statement about the orthosymplectic Lie supergroup over the infinite dimensional Grassmann algebra \({\Lambda}\). We take the latter point of view here, and also state a corresponding theorem for the orthosymplectic Lie superalgebra, which involves an extra invariant generator, the super-Pfaffian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atiyah M., Bott R., Patodi V.K.: On the heat equation and the index theorem. Invent. Math. 19, 279–330 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Benkart G., Shader CL, Ram A: Tensor product representations for orthosymplectic Lie superalgebras. J. Pure Appl. Algebra 130(1), 1–48 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berele A., Regev A.: Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras. Adv. Math. 64, 118–175 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brundan J., Stroppel C.: Gradings on walled Brauer algebras and Khovanov’s arc algebra. Adv. Math. 231, 709–773 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carmeli, C., Caston, L., Fioresi, R.: Mathematical foundations of supersymmetry. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2011)

  6. Cheng S.-J., Wang W.: Howe duality for Lie superalgebras. Compos. Math. 128(1), 55–94 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheng S.-J., Zhang R.B.: Howe duality and combinatorial character formula for orthosymplectic Lie superalgebras. Adv. Math. 182(1), 124–172 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheng S.-J., Lam N., Zhang R.B.: Character formula for infinite-dimensional unitarizable modules of the general linear superalgebra. J. Algebra 273(2), 780–805 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Deligne, P., Lehrer, G.I., Zhang, R.B.: The first fundamental theorem of invariant theory for the orthosymplectic super group. arXiv:1508.04202 [math.GR]

  10. Deligne, P., Morgan, J.W.: Notes on Supersymmetry (following Joseph Bernstein). Quantum Fields and Strings: A Course for Mathematicians, vol. 1, 2 (Princeton, NJ, 1996/1997), pp. 41–97. Amer. Math. Soc., Providence, RI (1999)

  11. De Witt, B.: Supermanifolds, 2nd edn. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1992)

  12. Goodman, R., Wallach, N.R.: Representations and Invariants of the Classical Groups, Cambridge University Press, third corrected printing (2003)

  13. Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants. Graduate Texts in Mathematics, vol. 255. Springer, Dordrecht (2009)

  14. Graham J.J., Lehrer G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Graham J.J., Lehrer G.I.: The representation theory of affine Temperley–Lieb algebras. Enseign. Math (2). 44(3–4), 173–218 (1998)

    MATH  MathSciNet  Google Scholar 

  16. Graham J.J., Lehrer G.I.: Diagram algebras, Hecke algebras and decomposition numbers at roots of unity. Ann. Sci. École Norm. Sup. 36, 479–524 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grahamm, J.J., Lehrer, G.I.: Cellular algebras and diagram algebras in representation theory. Representation Theory of Algebraic Groups and Quantum Groups. Adv. Stud. Pure Math., vol. 40. Math. Soc. Japan, Tokyo, pp. 141–173 (2004)

  18. Gould M.D., Zhang R.B.: Classification of all star irreps of gl(m|n). J. Math. Phys. 31(11), 2552–2559 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Howe R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313(2), 539–570 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kac V.: Lie superalgebras. Adv. Math. 26(1), 8–96 (1977)

    Article  MATH  Google Scholar 

  21. Kostant, B.: Graded manifolds, graded Lie theory, and prequantization. In: Differential Geometrical Methods in Mathematical Physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), pp. 177–306. Lecture Notes in Math., vol. 570, Springer, Berlin (1977)

  22. Lehrer G.I., Zhang R.B.: Strongly multiplicity free modules for Lie algebras and quantum groups. J. Algebra 306, 138–174 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lehrer, G.I., Zhang, R.B.: A Temperley–Lieb analogue for the BMV algebra. In: Representation Theory of Algebraic Groups and Quantum Groups, pp. 155–190. Progr. Math., vol. 284. Birkhäuser/Springer, New York (2010)

  24. Lehrer G.I., Zhang R.B.: On endomorphisms of quantum tensor space. Lett. Math. Phys. 86, 209–227 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Lehrer G.I., Zhang R.B.: The second fundamental theorem of invariant theory for the orthogonal group. Ann. Math. 176, 2031–2054 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lehrer G.I., Zhang R.B.: The Brauer category and invariant theory. J. Eur. Math. Soc. (JEMS) 17, 2311–2351 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lehrer G.I., Zhang H., Zhang R.B.: A quantum analogue of the first fundamental theorem of invariant theory. Commun. Math. Phys. 301, 131–174 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Manin, Y.I.: Gauge Field Theory and Complex Geometry. Grundlehren der Mathematischen Wissenschaften, vol. 289. Springer-Verlag, Berlin (1988)

  29. Procesi, C.: Lie Groups. An Approach Through Invariants and Representations, pp. xxiv+596. Universitext. Springer, New York (2007)

  30. Rui, H., Su, Y.: Affine walled Brauer algebras. Adv. Math. 285, 28–71 (2015)

  31. Salam A., Strathdee J.: Super-gauge transformations. Nucl. Phys. B 76, 477–482 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  32. Scheunert M.: Graded tensor calculus. J. Math. Phys. 24(11), 2658–2670 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Scheunert M.: Casimir elements of \({\varepsilon}\) Lie algebras. J. Math. Phys. 24(11), 2671–2680 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Scheunert M: Eigenvalues of Casimir operators for the general linear, the special linear and the orthosymplectic Lie superalgebras. J. Math. Phys. 24(11), 2681–2688 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Scheunert, M.: The Theory of Lie Superalgebras; An Introduction. Lecture Notes in Math., vol. 716. Springer-Verlag, Berlin (1979)

  36. Scheunert M., Zhang R.B.: Invariant integration on classical and quantum Lie supergroups. J. Math. Phys. 42(8), 3871–3897 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Scheunert M., Zhang R.B.: The general linear supergroup and its Hopf superalgebra of regular functions. J. Algebra 254(1), 44–83 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Scheunert M., Zhang R.B.: Integration on Lie supergroups: a Hopf algebra approach. J. Algebra 292, 324–342 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sergeev, A.: An analogue of the classical theory of invariants for Lie superalgebras (Russian). Funktsional. Anal. i Prilozhen. 26(3), 88–90 (1992); translation in Funct. Anal. Appl. 26 (1992), no. 3, 223–225

  40. Sergeev A.: An analog of the classical invariant theory for Lie superalgebras. I. Mich. Math. J. 49(1), 113–146 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sergeev A.: An analog of the classical invariant theory for Lie superalgebras. II. Mich. Math. J. 49(1), 147–168 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  42. Varadarajan, V.S.: Supersymmetry for Mathematicians: An Introduction. Courant Lecture Notes in Mathematics, vol. 11. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2004)

  43. Wu Y., Zhang R.B.: Unitary highest weight representations of quantum general linear superalgebra. J. Algebra 321(11), 3568–3593 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. Zhang R.B.: Finite-dimensional irreducible representations of the quantum supergroup U q (gl(m/n)). J. Math. Phys. 34(3), 1236–1254 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Zhang R.B.: Structure and representations of the quantum general linear supergroup. Commun. Math. Phys. 195(3), 525–547 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Lehrer.

Additional information

Communicated by Y. Kawahigashi

This research was supported by the Australian Research Council.

The first author thanks the Mittag-Leffler Institute, Stockholm, for hospitality during the preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehrer, G.I., Zhang, R.B. The First Fundamental Theorem of Invariant Theory for the Orthosymplectic Supergroup. Commun. Math. Phys. 349, 661–702 (2017). https://doi.org/10.1007/s00220-016-2731-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2731-7

Navigation