Skip to main content
Log in

Abstract

We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu–Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree P in spatial coordinates. These “polynomial shift symmetries” in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree P, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree P? To answer this (essentially cohomological) question, we develop a new graph-theoretical technique, and use it to prove several classification theorems. First, in the special case of P = 1 (essentially equivalent to Galileons), we reproduce the known Galileon N-point invariants, and find their novel interpretation in terms of graph theory, as an equal-weight sum over all labeled trees with N vertices. Then we extend the classification to P > 1 and find a whole host of new invariants, including those that represent the most relevant (or least irrelevant) deformations of the corresponding Gaussian fixed points, and we study their uniqueness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. ’t Hooft G.: Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO ASI Ser. B 59, 135 (1980)

    Google Scholar 

  2. Hořava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D79, 084008 (2009). [arXiv:0901.3775]

  3. Hořava, P.: Membranes at quantum criticality. JHEP 0903, 020 (2009). [arXiv:0812.4287]

  4. Mukohyama, S.: Hořava–Lifshitz cosmology: a review. Class. Quant. Grav. 27, 223101 (2010). [arXiv:1007.5199]

  5. Ambjørn, J., Görlich, A., Jordan, S., Jurkiewicz, J., Loll, R.: CDT meets Hořava–Lifshitz gravity. Phys. Lett. B690, 413–419 (2010). [arXiv:1002.3298]

  6. Hořava, P.: General covariance in gravity at a Lifshitz point. Class. Quant. Grav. 28, 114012 (2011). [arXiv:1101.1081]

  7. Anderson, C., Carlip, S.J., Cooperman, J.H., Hořava, P., Kommu, R.K., et al.: Quantizing Hořava–Lifshitz gravity via causal dynamical triangulations. Phys. Rev. D85, 044027 (2012). [arXiv:1111.6634]

  8. Janiszewski, S., Karch, A.: String theory embeddings of nonrelativistic field theories and their holographic Hořava gravity duals. Phys. Rev. Lett. 110(8), 081601 (2013) [arXiv:1211.0010]

  9. Janiszewski, S., Karch, A.: Non-relativistic holography from Hořava gravity. JHEP 1302, 123 (2013). [arXiv:1211.0005]

  10. Griffin, T., Hořava, P., Melby-Thompson, C.M.: Lifshitz gravity for Lifshitz holography. Phys. Rev. Lett. 110, 081602 (2013). [arXiv:1211.4872]

  11. Griffin, T., Grosvenor, K.T., Hořava, P., Yan, Z.: Multicritical symmetry breaking and naturalness of slow Nambu–Goldstone bosons. Phys. Rev. D88, 101701 (2013). [arXiv:1308.5967]

  12. Watanabe, H., Murayama, H.: Unified description of Nambu–Goldstone bosons without Lorentz invariance. Phys. Rev. Lett. 108, 251602 (2012). [arXiv:1203.0609]

  13. Nicolis, A., Rattazzi, R., Trincherini, E.: The Galileon as a local modification of gravity. Phys. Rev. D79, 064036 (2009). [arXiv:0811.2197]

  14. Griffin, T., Grosvenor, K.T., Hořava, P., Yan, Z.: Cascading multicriticality in nonrelativistic spontaneous symmetry breaking. High Energy Phys. Theory (2015). [arXiv:1507.06992]

  15. Hořava, P., Melby-Thompson, C.M.: General covariance in quantum gravity at a Lifshitz point. Phys. Rev. D82, 064027 (2010). [arXiv:1007.2410]

  16. Hořava, P., Melby-Thompson, C.M.: Anisotropic conformal infinity. Gen. Rel. Grav. 43, 1391 (2010). [arXiv:0909.3841]

  17. Kachru, S., Liu, X., Mulligan, M.: Gravity duals of Lifshitz-like fixed points. Phys. Rev. D78, 106005 (2008). [arXiv:0808.1725]

  18. Hinterbichler, K., Joyce, A.: Goldstones with extended shift symmetries. Int. J. Mod. Phys. D23, 1443001 (2014). [arXiv:1404.4047]

  19. Mermin N., Wagner H.: Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)

    Article  ADS  Google Scholar 

  20. Hohenberg P.: Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–386 (1967)

    Article  ADS  Google Scholar 

  21. Coleman S.R.: There are no Goldstone bosons in two dimensions. Commun. Math. Phys. 31, 259–264 (1973)

    Article  ADS  MATH  Google Scholar 

  22. Watanabe, H., Murayama, H.: Effective Lagrangian for Nonrelativistic Systems. Phys. Rev. X4(3), 031057 (2014). [arXiv:1402.7066]

  23. Bondy A., Murty U.S.R.: Graph Theory. Graduate Texts in Mathematics. Springer, London (2008)

    Google Scholar 

  24. Coleman S.R., Wess J., Zumino B.: Structure of phenomenological Lagrangians. 1. Phys. Rev. 177, 2239–2247 (1969)

    Article  ADS  Google Scholar 

  25. Callan J., Curtis G., Coleman S.R., Wess J., Zumino B.: Structure of phenomenological Lagrangians. 2. Phys. Rev. 177, 2247–2250 (1969)

    Article  ADS  Google Scholar 

  26. Volkov D.V.: Phenomenological lagrangians. Fiz. Elem. Chast. Atom. Yadra 4, 3–41 (1973)

    Google Scholar 

  27. Ogievetsky, V.: Nonlinear realizations of internal and space-time symmetries. In: Proceeding of X-th Winter School of Theoretical Physics in Karpacz 1 (1974)

  28. Goon, G., Hinterbichler, K., Joyce, A., Trodden, M.: Galileons as Wess-Zumino terms. JHEP 1206, 004 (2012). [arXiv:1203.3191]

  29. de Azcárraga J.A., Izquierdo J.M.: Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  30. Ivanov E.A., Ogievetskii V.I.: Inverse Higgs effect in nonlinear realizations. Theor. Math. Phys. 25(2), 1050 (1975)

    Article  Google Scholar 

  31. Brauner, T., Watanabe, H.: Spontaneous breaking of spacetime symmetries and the inverse Higgs effect. Phys. Rev. D89, 085004 (2014). [arXiv:1401.5596]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Hořava.

Additional information

Communicated by H. Ooguri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffin, T., Grosvenor, K.T., Hořava, P. et al. Scalar Field Theories with Polynomial Shift Symmetries. Commun. Math. Phys. 340, 985–1048 (2015). https://doi.org/10.1007/s00220-015-2461-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2461-2

Keywords

Navigation