Skip to main content
Log in

Stability of Local Quantum Dissipative Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Open quantum systems weakly coupled to the environment are modeled by completely positive, trace preserving semigroups of linear maps. The generators of such evolutions are called Lindbladians. In the setting of quantum many-body systems on a lattice it is natural to consider Lindbladians that decompose into a sum of local interactions with decreasing strength with respect to the size of their support. For both practical and theoretical reasons, it is crucial to estimate the impact that perturbations in the generating Lindbladian, arising as noise or errors, can have on the evolution. These local perturbations are potentially unbounded, but constrained to respect the underlying lattice structure. We show that even for polynomially decaying errors in the Lindbladian, local observables and correlation functions are stable if the unperturbed Lindbladian has a unique fixed point and a mixing time that scales logarithmically with the system size. The proof relies on Lieb–Robinson bounds, which describe a finite group velocity for propagation of information in local systems. As a main example, we prove that classical Glauber dynamics is stable under local perturbations, including perturbations in the transition rates, which may not preserve detailed balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alicki R., Horodecki M., Horodecki P., Horodecki R.: On thermal stability of topological qubit in Kitaev’s 4d model. Open Syst. Inf. Dyn. 17(01), 1–20 (2010). doi:10.1142/S1230161210000023

    Article  MATH  MathSciNet  Google Scholar 

  2. Araki H., Sewell G.L.: Kms conditions and local thermodynamical stability of quantum lattice systems. Commun. Math. Phys. 52(2), 103–109 (1977)

  3. Aspuru-Guzik A., Walther P.: Photonic quantum simulators. Nat. Phys. 8(4), 285–291 (2012)

    Article  Google Scholar 

  4. Augusiak R., Cucchietti F.M., Haake F., Lewenstein M.: Quantum kinetic Ising models. New J. Phys. 12(2), 025021 (2010). doi:10.1088/1367-2630/12/2/025021

    Article  ADS  MathSciNet  Google Scholar 

  5. Barreiro J.T., Schindler P., Gühne O., Monz T., Chwalla M., Roos C.F., Hennrich M., Blatt R. :Experimental multiparticle entanglement dynamics induced by decoherence. Nat. Phys. 6, 943–946 (2010). doi:10.1038/nphys1781

  6. Barthel T., Kliesch M.: Quasilocality and efficient simulation of Markovian quantum dynamics. Phys. Rev. Lett. 108(23), 230–504 (2012)

  7. Blatt R., Roos C.: Quantum simulations with trapped ions. Nat. Phys. 8(4), 277–284 (2012)

    Article  Google Scholar 

  8. Bloch I., Dalibard J., Nascimbène S.: Quantum simulations with ultracold quantum gases. Nat. Phys. 8(4), 267–276 (2012)

    Article  Google Scholar 

  9. Bodineau T., Zegarlinski B.: Hypercontractivity via spectral theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3(01), 15–31 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bravyi S., Hastings M.B., Michalakis S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 5(9), 093512 (2010). doi:10.1063/1.3490195

    Article  ADS  MathSciNet  Google Scholar 

  11. Briegel H., Browne D., Dür W., Raussendorf R., Van den Nest M.: Measurement-based quantum computation. Nat. Phys. 5(1), 19–26 (2009)

    Article  Google Scholar 

  12. Dennis E., Kitaev A., Landahl A., Preskill J.: Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002). doi:10.1063/1.1499754

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Duan L.M., Monroe C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010). doi:10.1103/RevModPhys.82.1209

    Article  ADS  Google Scholar 

  14. Farhi E., Goldstone J., Gutmann S., Lapan J., Lundgren A., Preda D.: A quantum adiabatic evolution algorithm applied to random instances of an np-complete problem. Science 292(5516), 472–475 (2001). doi:10.1126/science.1057726

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Gorini V., Kossakowski A., Sudarshan E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17(5), 821–825 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gross L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)

    Article  Google Scholar 

  17. Gross, L.: Logarithmic Sobolev inequalities and contractivity properties of semigroups. In: Dirichlet Forms (Varenna, 1992). Lecture Notes in Math., vol. 1563, pp. 54–88. Springer, Berlin (1993). doi:10.1007/BFb0074091

  18. Gross, L.: Hypercontractivity, logarithmic Sobolev inequalities, and applications: a survey of surveys. In: Diffusion, Quantum Theory, and Radically Elementary Mathematics. Math. Notes, vol. 47, pp. 45–73. Princeton Univ. Press, Princeton (2006)

  19. Haah J.: Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A 83(4), 042330 (2011). doi:10.1103/PhysRevA.83.042330

    Article  ADS  Google Scholar 

  20. Hammerer K., Sørensen A.S., Polzik E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010). doi:10.1103/RevModPhys.82.1041

    Article  ADS  Google Scholar 

  21. Hastings M.B.: Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B 69, 104–431 (2004). doi:10.1103/PhysRevB.69.104431

    Article  Google Scholar 

  22. Hastings M.B.: An area law for one-dimensional quantum systems. J. Stat. Mech. Theory Exp. 2007(08), P08024 (2007)

    Article  MathSciNet  Google Scholar 

  23. Hastings, M.B.: Locality in quantum systems (2010). arXiv:1008.5137

  24. Hastings M.B., Koma T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781–804 (2006). doi:10.1007/s00220-006-0030-4

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Hastings M.B., Wen X.G.: Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B 72, 045141 (2005). doi:10.1103/PhysRevB.72.045141

    Article  ADS  Google Scholar 

  26. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.J.: Entanglement in graph states and its applications. In: Quantum Computers, Algorithms Chaos. Proc. Internat. School Phys. Enrico Fermi, vol. 162, pp. 115–218. IOS, Amsterdam (2006)

  27. Holley, R.: Possible rates of convergence in finite range, attractive spin systems. In: Particle Systems, Random Media and Large Deviations (Brunswick, Maine, 1984). Contemp. Math., vol. 41, pp. 215–234. Am. Math. Soc., Providence (1985). doi:10.1090/conm/041/814713

  28. Houck A.A., Türeci H.E., Koch J.: On-chip quantum simulation with superconducting circuits. Nat. Phys. 8(4), 292–299 (2012)

    Article  Google Scholar 

  29. Johnston N., Kribs D.W., Paulsen V.I.: Computing stabilized norms for quantum operations via the theory of completely bounded maps. Quantum Inf. Comput. 9(1-2), 16–35 (2009)

    MATH  MathSciNet  Google Scholar 

  30. Jordan S.P., Lee K.S., Preskill J.: Quantum algorithms for quantum field theories. Science 336(6085), 1130–1133 (2012). doi:10.1126/science.1217069

    Article  ADS  Google Scholar 

  31. Kastoryano, M.J., Reeb, D., Wolf, M.M.: A cutoff phenomenon for quantum Markov chains. J. Phys. A 45(7), 075307 (2012). doi:10.1088/1751-8113/45/7/075307

  32. Kastoryano M.J., Temme K.: Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys. 54(5), 052202 (2013). doi:10.1063/1.4804995

    Article  ADS  MathSciNet  Google Scholar 

  33. King C.: Hypercontractivity for semigroups of unital qubit channels. Commun. Math. Phys. 328(1), 285–301 (2014). doi:10.1007/s00220-014-1982-4

    Article  ADS  MATH  Google Scholar 

  34. Kitaev A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003). doi:10.1016/S0003-4916(02)00018-0

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Klich I.: On the stability of topological phases on a lattice. Ann. Phys. 325, 2120 (2010). doi:10.1016/j.aop.2010.05.002

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. König R., Pastawski F.: Generating topological order: no speedup by dissipation. Phys. Rev. B 90, 045101 (2014). doi:10.1103/PhysRevB.90.045101

    Article  ADS  Google Scholar 

  37. Kossakowski A., Frigerio A., Gorini V., Verri M.: Quantum detailed balance and KMS condition. Commun. Math. Phys. 57(2), 97–110 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Kraus B., Büchler H.P., Diehl S., Kantian A., Micheli A., Zoller P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78(4), 042307 (2008). doi:10.1103/PhysRevA.78.042307

    Article  ADS  Google Scholar 

  39. Krauter H., Muschik C.A., Jensen K., Wasilewski W., Petersen J.M., Cirac J.I., Polzik E.S.: Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011). doi:10.1103/PhysRevLett.107.080503

    Article  ADS  Google Scholar 

  40. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. American Mathematical Society, Providence (2009)

  41. Liggett, T.M.: Interacting particle systems. In: Classics in Mathematics. Springer, Berlin (2005). (Re-print of the 1985 original)

  42. Lindblad G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Lubetzky E., Sly A.: Cutoff for the Ising model on the lattice. Invent. Math. 191(3), 719–755 (2013). doi:10.1007/s00222-012-0404-5

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Majewski W.A.: The detailed balance condition in quantum statistical mechanics. J. Math. Phys. 25(3), 614–616 (1984). doi:10.1063/1.526164

    Article  ADS  MathSciNet  Google Scholar 

  45. Majewski W.A., Streater R.F.: Detailed balance and quantum dynamical maps. J. Phys. A 31(39), 7981–7995 (1998). doi:10.1088/0305-4470/31/39/013

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Martinelli, F.: Lectures on Glauber dynamics for discrete spin models. In: Lectures on Probability Theory and Statistics (Saint-Flour, 1997). Lecture Notes in Math., vol. 1717, pp. 93–191. Springer, Berlin (1999). doi:10.1007/978-3-540-48115-7_2

  47. Martinelli F., Olivieri E., Schonmann R.H.: For 2-D lattice spin systems weak mixing implies strong mixing. Commun. Math. Phys. 165(1), 33–47 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Maurer P.C., Kucsko G., Latta C., Jiang L., Yao N.Y., Bennett S.D., Pastawski F., Hunger D., Chisholm N., Markham M., Twitchen D.J., Cirac J.I., Lukin M.D.: Room-temperature quantum bit memory exceeding one second. Science 336(6086), 1283–1286 (2012). doi:10.1126/science.1220513

    Article  ADS  Google Scholar 

  49. Michalakis S., Zwolak J.P.: Stability of frustration-free Hamiltonians. Commun. Math. Phys. 322, 277–302 (2013). doi:10.1007/s00220-013-1762-6

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Nachtergaele, B., Vershynina, A., Zagrebnov, V.A.: Lieb–Robinson bounds and existence of the thermodynamic limit for a class of irreversible quantum dynamics. In: Entropy and the Quantum II. Contemp. Math., vol. 552, pp. 161–175. Am. Math. Soc., Providence (2011). doi:10.1090/conm/552/10916

  51. Nayak C., Simon S.H., Stern A., Freedman M., Das Sarma S.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008). doi:10.1103/RevModPhys.80.1083

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Olkiewicz R., Zegarlinski B.: Hypercontractivity in noncommutative L p spaces. J. Funct. Anal. 161(1), 246–285 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  53. Pastawski F., Clemente L., Cirac J.I.: Quantum memories based on engineered dissipation. Phys. Rev. A 83(1), 012304 (2011)

    Article  ADS  Google Scholar 

  54. Poulin D.: Lieb–Robinson bound and locality for general Markovian quantum dynamics. Phys. Rev. Lett. 104(19), 190401 (2010). doi:10.1103/PhysRevLett.104.190401

    Article  ADS  MathSciNet  Google Scholar 

  55. Sachdev, S.: Quantum Phase Transitions. Wiley, New York (2007). doi:10.1002/9780470022184.hmm108

  56. Sewell G.L.: Kms conditions and local thermodynamical stability of quantum lattice systems. II. Commun. Math. Phys. 55(1), 53–61 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  57. Szehr, O., Reeb, D., Wolf, M.M.: Spectral convergence bounds for classical and quantum markov processes. Commun. Math. Phys. 1–31 (2014). doi:10.1007/s00220-014-2188-5

  58. Szehr O., Wolf M.M.: Perturbation bounds for quantum Markov processes and their fixed points. J. Math. Phys. 54(3), 032203 (2013). doi:10.1063/1.4795112

    Article  ADS  MathSciNet  Google Scholar 

  59. Temme K., Kastoryano M.J., Ruskai M.B., Wolf M.M., Verstraete F.: The \({\chi^2}\)-divergence and mixing times of quantum Markov processes. J. Math. Phys. 51(12), 122201 (2010). doi:10.1063/1.3511335

    Article  ADS  MathSciNet  Google Scholar 

  60. Temme K., Pastawski F., Kastoryano M.J.: Hypercontractivity of quasi-free quantum semigroups. J. Phys. A Math. Theor. 47, 405303 (2014)

    Article  MathSciNet  Google Scholar 

  61. Verstraete F., Wolf M.M., Cirac J.I.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5(9), 633–636 (2009)

    Article  Google Scholar 

  62. Wolf, M.M.: Quantum channels and operations. Guided tour (2012). http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf. Accessed 27 July 2012

  63. Wolf, M.M., Perez-Garcia, D.: The inverse eigenvalue problem for quantum channels (2010). arXiv:1005.4545

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Lucia.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cubitt, T.S., Lucia, A., Michalakis, S. et al. Stability of Local Quantum Dissipative Systems. Commun. Math. Phys. 337, 1275–1315 (2015). https://doi.org/10.1007/s00220-015-2355-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2355-3

Keywords

Navigation