Skip to main content
Log in

Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional, is shown using a new interpolation lemma for partition functions. The local behaviour of the Gibbs measures can be parametrized by Young measures on the space of gradient Gibbs measures. In view of the unboundedness of the state space, the crucial tool here is an exponential tightness estimate that holds for a vast class of potentials and the construction of suitable compact sets of gradient Gibbs measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morrey C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2, 25–53 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  2. Acerbi E., Fusco N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86, 125–145 (2004)

    Article  MathSciNet  Google Scholar 

  3. Pisztora Á.: Surface order large deviations of Ising, Potts and percolation models. Probab. Theory Relat. Fields 104, 427–466 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cerf, R.: Large deviations for three dimensional supercritical percolation. Astérisque 267, 1–177 (2000)

    Google Scholar 

  5. Bodineau T.: The Wulff construction in three and more dimensions. Commun. Math. Phys. 207, 197–229 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Cerf R., Pisztora Á.: On the Wulff crystal in the Ising model. Ann. Probab. 28, 947–1017 (2000)

    MATH  MathSciNet  Google Scholar 

  7. Deuschel J.-D., Giacomin G., Ioffe D.: Large deviations and concentration properties for \({\nabla\varphi}\) interface models. Probab. Theory Relat. Fields 117, 49–111 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Sheffield S.: Random surfaces. Astérisque 304, 1–175 (2005)

    Google Scholar 

  9. Braides, A.: Gamma-convergence for beginners. Oxford Lecture Series in mathematics and its applications, Vol. 22 (2002)

  10. Bourgeat A., Luckhaus S., Mikelić A.: Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. SIAM J. Math. Anal. 27, 1520–1543 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Funaki T., Spohn H.: Motion by mean curvature from the Ginzburg–Landau \({\nabla\varphi}\) interface model. Commun. Math. Phys. 185, 1–36 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Biskup M., Kotecký R.: Phase coexistence of gradient Gibbs states. Probab. Theory Relat. Fields 139, 1–39 (2007)

    Article  MATH  Google Scholar 

  13. Friesecke G., Theil F.: Validity and failure of the Cauchy–Born hypothesis in a two-dimensional mass-spring lattice. J. Nonlinear Sci. 12, 445–478 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Bourbaki, N.: Intégration, Paris: Hermann, 1969

  15. Bogachev, V.I.: Measure Theory, New York: Springer, 2007

  16. Pachl J.K.: Disintegration and compact measures. Math. Scand. 43, 157–168 (1978)

    MATH  MathSciNet  Google Scholar 

  17. Fremlin, D.H.: Measure theory. Topological measure spaces, Vol. 4, Part I, 2nd ed. Colchester: Torres Fremlin, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Kotecký.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotecký, R., Luckhaus, S. Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures. Commun. Math. Phys. 326, 887–917 (2014). https://doi.org/10.1007/s00220-014-1903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1903-6

Keywords

Navigation