Skip to main content
Log in

Asymptotic Number of Scattering Resonances for Generic Schrödinger Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let −Δ + V be the Schrödinger operator acting on \({L^2(\mathbb{R}^d,\mathbb{C})}\) with \({d\geq 3}\) odd. Here V is a bounded real or complex function vanishing outside the closed ball of center 0 and of radius a. Let n V (r) denote the number of resonances of −Δ + V with modulus ≤  r. We show that if the potential V is generic in a sense of pluripotential theory then

$$n_V(r)=c_d a^dr^d+ O(r^{d-{3\over 16}+\epsilon}) \quad \mbox{as } r \to \infty$$

for any ε > 0, where c d is a dimensional constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christiansen T.: Some lower bounds on the number of resonances in Euclidean scattering. Math. Res. Lett. 6(2), 203–211 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Christiansen T.: Several complex variables and the distribution of resonances in potential scattering. Commun. Math. Phys. 259(3), 711–728 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Christiansen T.: Schrödinger operators with complex-valued potentials and no resonances. Duke Math. J. 133(2), 313–323 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Christiansen T.: Several complex variables and the order of growth of the resonance counting function in Euclidean scattering. Int. Math. Res. Notices 2006(12), 36 (2006)

    MathSciNet  Google Scholar 

  5. Christianen T.: Schrödinger operators and the distribution of resonances in sectors. Anal. PDE 5(5), 961–982 (2012)

    Article  MathSciNet  Google Scholar 

  6. Christiansen T., Hislop P.D.: The resonance counting function for Schrödinger operators with generic potentials. Math. Res. Lett. 12(5–6), 821–826 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Demailly, J.-P.: Complex analytic and differential geometry. http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, 2012

  8. Dinh T.-C., Nguyên V.-A., Sibony N.: Exponential estimates for plurisubharmonic functions and stochastic dynamics. J. Differ. Geom. 84(3), 465–488 (2010)

    MATH  Google Scholar 

  9. Dinh, T.-C., Sibony, N.: Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings. In: Holomorphic dynamical systems. Lecture Notes in Mathematics, Vol. 1998, Berlin: Springer, 2010, pp. 165–294

  10. Folland, G.: Introduction to partial differential equations. Princeton, NJ: Princeton University Press, 1995

  11. Froese R.: Asymptotic distribution of resonances in one dimension. J. Differ. Eqs. 137(2), 251–272 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Hörmander, L.: The analysis of linear partial differential operators. IV. Fourier integral operators. Classics in Mathematics, Berlin: Springer-Verlag, 2009

  13. Lelong, P., Gruman, L.: Entire functions of several complex variables, Vol. 282, Berlin: Springer-Verlag, 1986

  14. Melrose R.B.: Scattering theory and the trace of the wave group. J. Funct. Anal. 45, 29–40 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Melrose R.B.: Polynomial bounds on the number of scattering poles. J. Funct. Anal. 53, 287–303 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Melrose, R.B.: Growth estimates for the poles in potential scattering. Unpublished, 1984

  17. Olver F.W.J.: The asymptotic expansion of Bessel functions of large order. Philos. Trans. R. Soc. Lond. A 247, 328–368 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  18. Olver, F.W.J.: Asymptotic and special functions. Wellesley, MA: A. K. Peters, Ltd., 1997

  19. Ransford, T.: Potential theory in the complex plane. London Mathematical Society Student Texts, Vol. 28, Cambridge: Cambridge University Press, 1995

  20. Regge T.: Analytic properties of the scattering matrix. Il Nuovo Cimento 8(10), 671–679 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sá Barreto A.: Remarks on thssse distribution of resonances in odd dimensional Euclidean scattering. Asymptot. Anal. 27(2), 161–170 (2001)

    MATH  MathSciNet  Google Scholar 

  22. Sá Barreto A., Zworski M.: Existence of resonances in potential scattering. Commun. Pure Appl. Math. 49(12), 1271–1280 (1996)

    Article  MATH  Google Scholar 

  23. Simon B.: Resonances in one dimension and Fredholm determinants. J. Funct. Anal. 178(2), 396–420 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sjöstrand, J.: Weyl law for semi-classical resonances with randomly perturbed potentials. http://arxiv.org/abs/1111.3549v2 [math.AP], 2011

  25. Sjöstrand J., Zworski M.: Complex scaling and the distribution of scattering poles. J. Am. Math. Soc. 4(4), 729–769 (1991)

    Article  MATH  Google Scholar 

  26. Stefanov P.: Sharp upper bounds on the number of scattering poles. J. Funct. Anal. 231, 111–142 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Vodev G.: Sharp bounds on the number of scattering poles for perturbations of the Laplacian. Commun. Math. Phys. 146(1), 205–216 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Vodev G.: Resonances in the Euclidean scattering. Cubo Mat. Educ. 3(1), 317–360 (2001)

    MATH  MathSciNet  Google Scholar 

  29. Zworski M.: Distribution of poles for scattering on the real line. J. Funct. Anal. 73, 277–296 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zworski M.: Sharp polynomial bounds on the number of scattering poles of radial potentials. J. Funct. Anal. 82, 370–403 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zworski M.: Sharp polynomial bounds on the number of scattering poles. Duke Math. J. 59, 311–323 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zworski, M.: Counting scattering poles. In: Spectral and scattering theory (Sanda, 1992), Lecture Notes in Pure and Appllied Mathematics, Vol. 161, New York: Dekker, 1994, pp. 301–331

  33. Zworski, M.: Quantum resonances and partial differential equations. In: Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), Beijing: Higher Ed. Press, 2002, pp. 243–252

  34. Zworski, M.: Lectures on resonances. http://math.berkeley.edu/~zworski/res.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien-Cuong Dinh.

Additional information

Communicated by I. M. Sigal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinh, TC., Vu, DV. Asymptotic Number of Scattering Resonances for Generic Schrödinger Operators. Commun. Math. Phys. 326, 185–208 (2014). https://doi.org/10.1007/s00220-013-1842-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1842-7

Keywords

Navigation