Skip to main content
Log in

Batalin-Vilkovisky Formalism in Perturbative Algebraic Quantum Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

On the basis of a thorough discussion of the Batalin-Vilkovisky formalism for classical field theory presented in our previous publication, we construct in this paper the Batalin-Vilkovisky complex in perturbatively renormalized quantum field theory. The crucial technical ingredient is an extended notion of the renormalized time-ordered product as a binary product equivalent to the pointwise product of classical field theory. Originally, in causal perturbation theory, the time-ordered product is understood merely as a sequence of multilinear maps on the space of local functionals. Our extended notion of the renormalized time-ordered product (denoted by \({\cdot_{{}^{\mathcal{T}_{\rm r}}}}\)) is consistent with the old one and we found a subspace of the quantum algebra which is closed with respect to \({\cdot_{{}^{\mathcal{T}_{\rm r}}}}\) . On this space the renormalized Batalin-Vilkovisky algebra is then the classical algebra but written in terms of the time-ordered product, together with an operator which replaces the ill defined graded Laplacian of the unrenormalized theory. We identify it with the anomaly term of the anomalous Master Ward Identity of Brennecke and Dütsch. Contrary to other approaches we do not refer to the path integral formalism and do not need to use regularizations in intermediate steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert C., Bleile B., Fröhlich J.: Batalin-Vilkovisky lntegrals in finite dimensions. J. Math. Phys. 51(1), 31 (2010)

    Article  Google Scholar 

  2. Barnich, G.: Classical and quantum aspects of the extended antifield formalism. ULB-TH-00-28, May 2000; These d’agregation ULB (June 2000); Proceedings of the Spring School “QFT and Hamiltonian Systems”, Calimanesti, Romania, May 2–7, 2000; avialble at http://arxiv.org/abs/hepth/0011120v1, 2000

  3. Barnich G., Brandt F., Henneaux M.: Local BRST cohomology in the antifield formalism: I. General theorems. Commun. Math. Phys. 174, 57–92 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Barnich G., Henneaux M.: Consistent couplings between fields with a gauge freedom and deformations of the master equation. Phys. Lett. B 311, 123 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  5. Barnich G., Henneaux M., Hurth T., Skenderis K.: Cohomological analysis of gauge-fixed gauge theories. Phys. Lett. B 492, 376 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Barnich G., Brandt F., Henneaux M.: Local BRST cohomology in gauge theories. Phys. Rept. 338, 439 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Batalin I.A., Vilkovisky G.A.: Relativistic S matrix of dynamical systems with Boson and Fermion constraints. Phys. Lett. 69, 309 (1977)

    Google Scholar 

  8. Batalin I.A., Vilkovisky G.A.: Gauge algebra and quantization. Phys. Lett. 102, 27 (1981)

    MathSciNet  Google Scholar 

  9. Batalin I.A., Vilkovisky G.A.: Feynman rules for reducible Gauge Theories. Phys. Lett. B 120, 166 (1983)

    Article  ADS  Google Scholar 

  10. Batalin I.A., Vilkovisky G.A.: Quantization of Gauge theories with linearly dependent generators. Phys. Rev. D 28, 2567 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  11. Becchi C., Rouet A., Stora R.: Renormalization of the Abelian Higgs-Kibble model. Commun. Math. Phys. 42, 127 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  12. Becchi C., Rouet A., Stora R.: Renormalization of Gauge theories. Ann. Phys. 98, 287 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  13. Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields. New York: Interscience Publishers, Inc., 1959

  14. Bonora L., Cotta-Ramusino P.: Some remarks on BRS transformations, anomalies and the cohomoloy of the Lie algebra of the group of Gauge transformations. Commun. Math. Phys. 87, 589–603 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Brennecke F., Dütsch M.: Removal of violations of the Master Ward Identity in perturbative QFT. Rev. Math. Phys. 20, 119–172 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: renormalization on Physical Backgrounds. Commun. Math. Phys. 208, 623–661 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Brunetti, R., Fredenhagen, K.: Towards a Background Independent Formulation of Perturbative Quantum Gravity. In: Proceedings of Workshop on Mathematical and Physical Aspects of Quantum Gravity, Blaubeuren, Germany, 28 Jul - 1 Aug 2005. Fauser, B. (ed.) et al.: Quantum gravity, Basel: Birkhäuser, 2006, pp. 151–157

  18. Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996)

    Article  ADS  MATH  Google Scholar 

  19. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle - A new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  20. Brunetti R., Dütsch M., Fredenhagen K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Costello, K.: Renormalization and effective field theory. Mathematical Surveys and Monographs, Volume 170, Providence, RI: Amer. Math. Soc., 2011

  22. Costello, K.: Renormalisation and the Batalin-Vilkovisky formalism. http://arxiv.org/abs/0706.1533v3 [math.QA], 2007

  23. Costello, K.: Factorization algebras in perturbative quantum field theory. http://www.math.northwestern.edu/~costello/factorization_public.html

  24. Dütsch M., Boas F.-M.: The master Ward identity. Rev. Math. Phys 14, 977–1049 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dütsch, M., Fredenhagen, K.: Perturbative algebraic field theory, and deformation quantization. In: Proceedings of the Conference on Mathematical Physics in Mathematics and Physics, Siena June 20–25 2000, available at http://arxiv.org/abs/hep-th/0101079v1, 2001

  26. Dütsch M., Fredenhagen K.: Causal perturbation theory in terms of retarded products, and a proof of the action Ward identity. Rev. Math. Phys. 16(10), 1291–1348 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dütsch M., Fredenhagen K.: The master Ward identity and generalized Schwinger-Dyson equation in classical field theory. Commun. Math. Phys. 243, 275 (2003)

    Article  ADS  MATH  Google Scholar 

  28. Epstein H., Glaser V.: The role of locality in perturbation theory. Ann. Inst. H. Poincaré A 19, 211 (1973)

    MathSciNet  Google Scholar 

  29. Fredenhagen, K.: Locally Covariant Quantum Field Theory. In: Proceedings of the XIVth International Congress on Mathematical Physics, Lisbon 2003, available at http://arxiv.org/abs/hep-th/0403007v1, 2009

  30. Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in the functional approach to classical field theory. http://arxiv/org.abs/1101.5112v4 [math-ph], 2011

  31. Fredenhagen, K., Rejzner, K.: Local covariance and background independence. to be published in the Proceedings of the conference “Quantum field theory and gravity”, Regensburg (28 Sep - 1 Oct 2010), http://arxiv.org/abs/1102.2376v1 [math-ph], 2011

  32. Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Haag, R.: Discussion des “axiomes” et des propriétés asymptotiques d’une théorie des champs locales avec particules composées. In: Les Problèmes Mathématiques de la Théorie Quantique des Champs, Colloque Internationaux du CNRS LXXV (Lille 1957), Paris: CNRS 1959, pp. 151–157

  34. Haag, R.: Local Quantum Physics. 2nd ed., Berlin-Heidleberg-NewYork: Springer, 1996

  35. Hamilton R.S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7(1), 65–222 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Henneaux, M., Teitelboim, C.: Quantization of gauge systems. Princeton, NJ: Princeton Univ. Pr., 1992

  37. Henneaux, M.: Lectures On The Antifield - BRST Formalism For Gauge Theories. Lectures given at 20th GIFT Int. Seminar on Theoretical Physics, Jaca, Spain, Jun 5–9, 1989, and at CECS, Santiago, Chile, June/July 1989, Nucl. Phys. B (Proc. Suppl.) A18, 47 (1990)

  38. Hollands S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hollands S., Wald R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Hollands S., Wald R.M.: Existence of local covariant time-ordered-products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309–345 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Hollands S., Wald R.M.: On the renormalization group in curved spacetime. Commun. Math. Phys. 237, 123–160 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  42. Hollands S., Wald R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hörmander, L.: The analysis of linear partial differential operators I: Distribution theory and Fourier analysis. Berlin-Heidleberg-New York: Springer, 2003

  44. De Jonghe F., París J., Troost W.: The BPHZ renormalised BV master equation and two-loop anomalies in chiral gravities. Nucl. Phys. B 476, 559 (1996)

    Article  ADS  MATH  Google Scholar 

  45. Kriegl, A., Michor, P.: Convenient setting of global analysis, Mathematical Surveys and Monographs 53, Providence, RI: Amer. Math. Soc., 1997

  46. Lee B.W., Zinn-Justin J.: Spontaneously Broken Gauge symmetries I,II,III. Phys. Rev D 5, 3121–3160 (1972)

    Article  ADS  Google Scholar 

  47. Neeb, K.-H.: Monastir Lecture Notes on Infinite-Dimensional Lie Groups, http://www.math.uni-hamburg.de/home/wockel/data/monastir.pdf

  48. Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. París J.: Non-locally regularized antibracket-antifield formalism and anomalies in chiral W 3 gravity. Nucl. Phys. B 450, 357 (1995)

    Article  ADS  MATH  Google Scholar 

  50. Piguet, O., Sorella, S.P.: Algebraic renormalization: Perturbative renormalization, symmetries and anomalies, Vol. M28 of Lect. Notes Phys., Berlin-Heidleberg-New York: Springer, 1995

  51. Polchinski J.: Renormalization and Effective Lagrangians. Nucl. Phys. B 231, 269–295 (1984)

    Article  ADS  Google Scholar 

  52. Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Rejzner K.: Fermionic fields in the functional approach to classical field theory. Rev. math. Phys. 23(9), 1009–1033 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Salmhofer, M.: Renormalization. An introduction. Texts and Monographs in Physics. Berlin: Springer-Verlag, 1999

  55. Schreiber, U.: On Lie ∞-modules and the BV complex. http://www.math.uni-hamburg.de/home/schreiber/chain.pdf, 2008

  56. Stasheff, J.: The (secret?) homological algebra of the Batalin-Vilkovisky approach. In: Proceedings of the Conference Secondary Calculus and Cohomological Physics, Moscow, August 24–31, 1997, http://arxiv.org/abs/hep-th/9712157v1, 1997

  57. Stückelberg E.C.G., Rivier D.: A propos des divergences en théorie des champs quantifiés. Helv. Phys. Acta 23, 236–239 (1950)

    MATH  Google Scholar 

  58. Stückelberg E.C.G., Petermann A.: La normalisation des constantes dans la théorie des quanta. Helv. Phys. Acta 26, 499–520 (1953)

    MathSciNet  MATH  Google Scholar 

  59. Tonin M.: Dimensional regularization and anomalies in chiral gauge theories. Nucl. Phys. (Proc. Suppl.) B 29, 137 (1992)

    Article  ADS  Google Scholar 

  60. Troost W., van Nieuwenhuizen P., Van Proeyen A.: Anomalies and the Batalin-Vilkovisky Lagrangian formalism. Nucl. Phys. B 333, 727 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  61. Tyutin, I.V.: Gauge invariance in field theory and statistical physics in operator formalism (In Russian), Lebedev preprint (1975) 75-39, available at http://arxiv.org/abs/0812.0580 [hep-th], 2008

  62. Wess J., Zumino B.: Consequences of anomalous Ward identities. Phys. Lett. B 37, 95 (1971)

    MathSciNet  ADS  Google Scholar 

  63. Wightman A.S., Gårding L.: Fields as operator valued distributions in relativistic quantum theory. Ark. Fys. 28, 129–189 (1964)

    Google Scholar 

  64. Zinn-Justin, J.: Renormalization of Gauge Theories. In: Trends in Elementary Particle Theory. edited by H. Rollnik, K. Dietz, Lecture Notes in Physics 37, Berlin: Springer-Verlag, 1975

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Rejzner.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fredenhagen, K., Rejzner, K. Batalin-Vilkovisky Formalism in Perturbative Algebraic Quantum Field Theory. Commun. Math. Phys. 317, 697–725 (2013). https://doi.org/10.1007/s00220-012-1601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1601-1

Keywords

Navigation